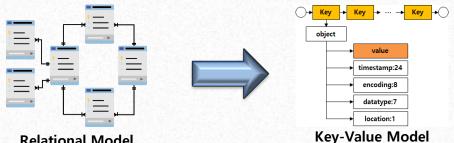
LESS : Logging Exploiting SnapShot

연세대학교 컴퓨터과학과 성한승 2019년 4월 SW STOR LAB Software Technology Advanced Research

과제명: loT 환경을 위한 고성능 플래시 메모리 스토리지 기반 인메모리 분산 DBMS 연구개발

과제번호: 2017-0-00477

Contents

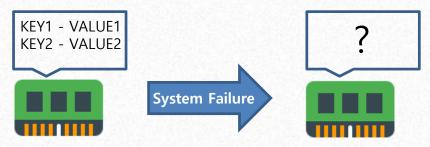

01. Introduction 02. Background & Motivation 03. LESS 04. Evaluation 05. Conclusion

Introduction

- Changes in Trends
 - The appearance of Key-Value Store
 - ✓ Unstructured data are produced (ex, blog data, sensor data...)
 - ✓ Difficult to process unstructured data with RDBMS
 - → Store data as key-value pairs

- Device
- Relational Model
- $\checkmark\,$ Demand for rapid processing of large volumes of data
 - → Need high-performance device

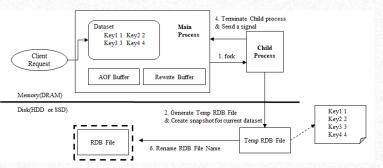
Hard Disk Drive & Solid State Drive



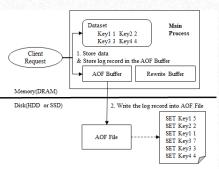
Dynamic Random-Access Memory

Introduction

- In-Memory Key-Value Store
 - Use Dynamic Random-Access Memory as its primary storage
 - ✓ High performance and Efficient unstructured data management
 - ✓ Redis, Memcached, RAMCloud, MICA, etc.
 - ✓ Volatile....


- To ensure data durability
 - ✓ Snapshot : Create snapshot file of current dataset
 - ✓ Append Log File : Write the log of performed command in the log file

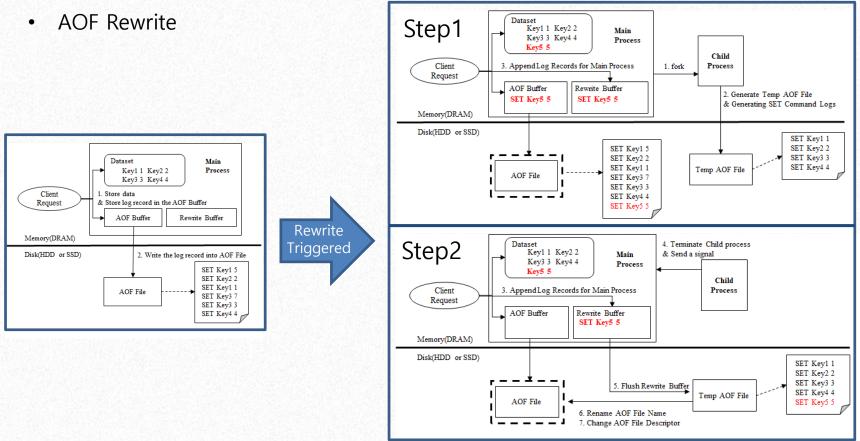
02 Background & Motivation


Background

- Redis
 - The most popular in-memory key-value store
 - Store data in key-value pairs in memory
 - Provide various data structures
 - string, list, set, sorted set, hash ...
 - Single thread-based process
 - Persistence method
 - RDB
 - Append-Only-File(AOF)
- RDB(Snapshot)

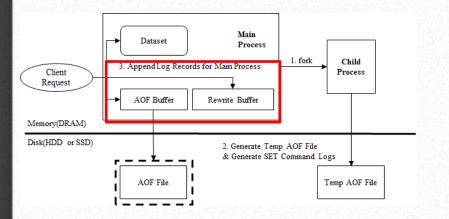
- Generate point-in-time snapshots of a dataset at specific intervals
- Advantage
 - Small file size
 - Higher performance than AOF
 - Fast recovery speed
- Disadvantage
 - Can not guarantee data persistency

• AOF(Append-Only-File)



- Append log records in an AOF file when command to change memory status
- Advantage
 - Ensure data persistence higher than RDB
- Disadvantage
 - Slower performance than RDB
 - Large file size (Data insertion → Increase File size)
 - Slower recovery speed than RDB
 - Can cause system failure

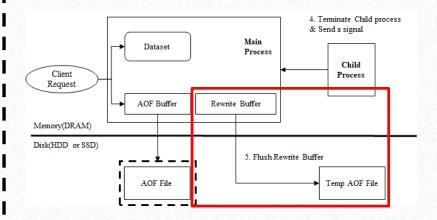
Background



- Reconstruction method that reduces the size of an AOF File
- AOF Rewrite triggers when the file size is greater than the minimum size(Default : 64MB)
- Leave the command for the current data and remove the rest
- However, excessive memory usage and performance degradation occur during AOF Rewrite.

Motivation

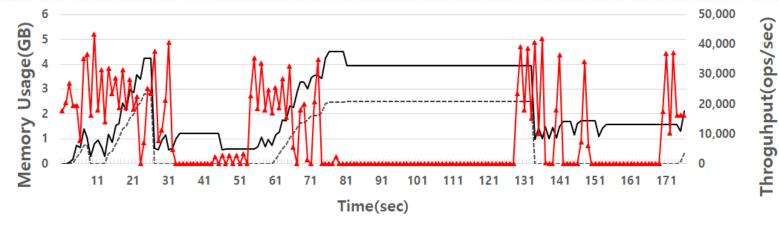
Memory Overhead



• The log record is stored in AOF Buffer and Rewrite Buffer during AOF Rewrite

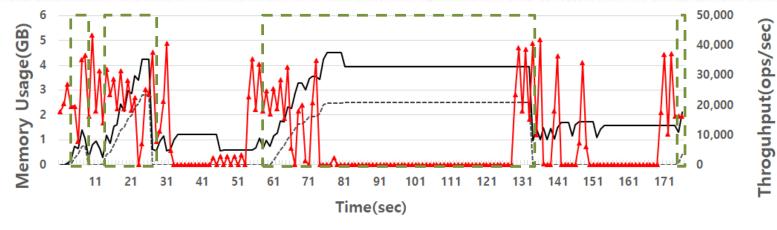
→ Increase memory usage

• AOF Rewrite causes an out-of-memory to occur with limited memory capacity

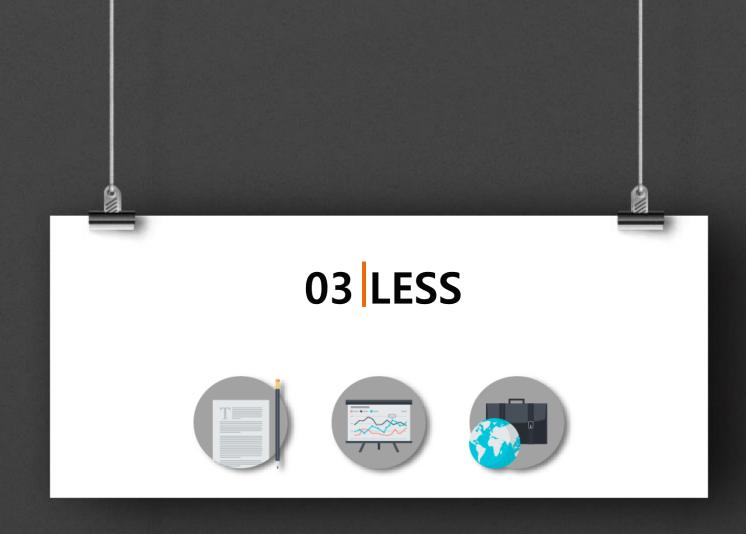

Throughput degradation

- Redis can process only one command at a particular time
- After creation of the temp AOF file, Flush the log records in Rewrite Buffer to temp AOF file
- The newly requested command is delayed until the flush operation is completed
 - → Decline of the overall throughput

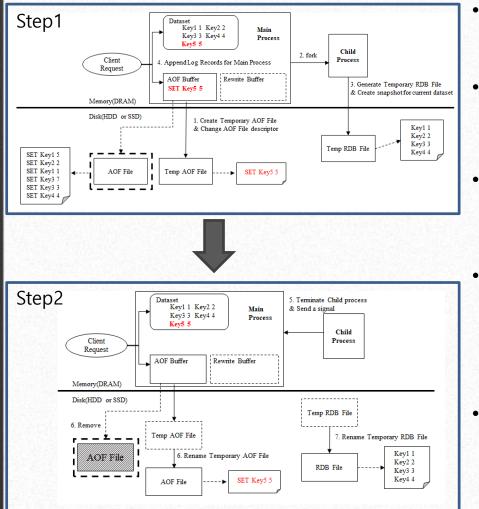
Motivation



- Simulate workloads of hot data that are frequently updated by users
 → The effect of the AOF file can be identified
 - Key 16B, Value 10KB
 - 100,000 SET Commands, 900,000 Duplicate SET Commands

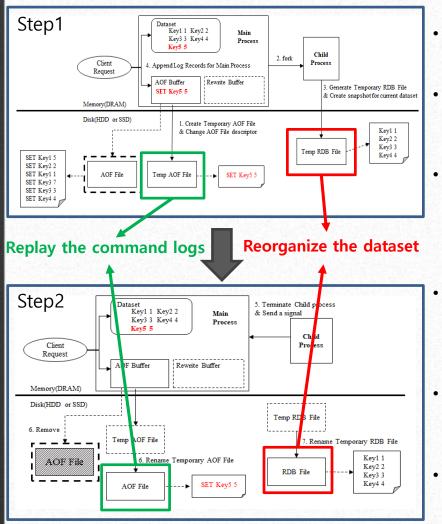

Motivation

— Total Memory Usage -----AOF Rewrite Buffer Memory Usage — Throughput(ops/sec)

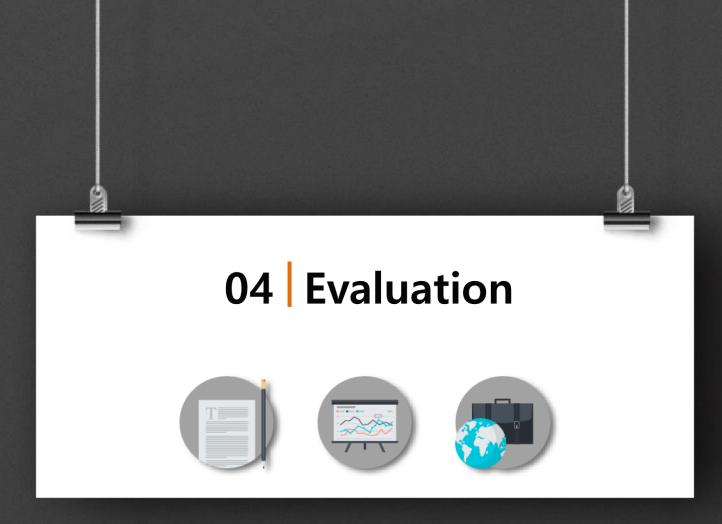

- Simulate workloads of hot data that are frequently updated by users
 - Key 16B, Value 10KB
 - 100,000 SET Commands, 900,000 Duplicate SET Commands
- AOF Rewrite occurred four times
 - ✓ 3-8s, 13-26s, 60-133s, and 175-177s
- Increase AOF Rewrite Buffer memory usage → Increase Total memory usage
- Increased memory usage and performance degradation during AOF Rewrite

Logging Exploiting SnapShot

• LESS Operation


- Design to reduce memory usage and improve the performance
- The child process...
 - Create a snapshot file with a small file size and fast recovery speed
- The main process...
 - Perform AOF logging for the newly requested operation
- Difference(vs AOF Rewrite)
 - Child process generate **RDB** File
 - Do not use Rewrite Buffer
 - Not merge file created by child process and contents of Rewrite Buffer
- Advantage(vs AOF Rewrite)
 - Relatively Light disk I/O
 - Small memory usage
 - Fast performance

Logging Exploiting SnapShot


.

LESS Recovery

- Use 4 types of files for complete data recovery
 - ✓ AOF File, Temp AOF File, RDB File, Temp RDB File
- System failure occurred before LESS was first run 1. **AOF** File
- System failure occurred after LESS was first run
 - 1. RDB File
 - 2. AOF File
- System failure occurred between creation of Temp AOF File & Temp RDB File
 - 1. **RDB** File
 - 2. AOF File
 - 3. Temp AOF File
- System failure occurred during generation of RDB
 - 1. RDB File
 - 2. AOF File
 - 3. Temp AOF File
- System failure occurred after Temp AOF File renamed
 - 1. Temp RDB File
 - 2. AOF File
- System failure occurred after Temp RDB File renamed
 - 1. RDB File
 - 2. AOF File

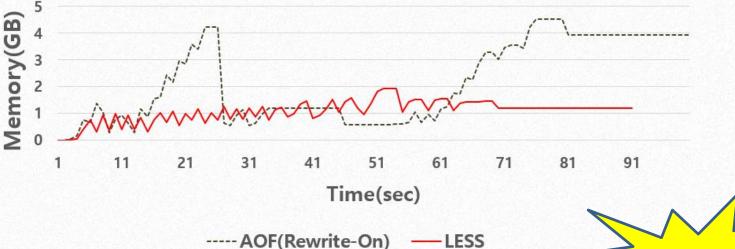
Evaluation

Configuration

TABLE I.	EXPERIMENT SETTING \leftarrow	
Hardware Setting $_{\circ}$		
CPU ↔	Intel(R) Xeon(R) CPU E5-2660 v2 @ 2.20GHz 10cores +	
RAM 42	DDR3 64 GB 4	
Disk(SSD) 42	Crucial_CT250MX200SSD1 250 GB * 3 @	
Software Setting ->		
OS + ²	Cent OS 7.3.1611 (Core)	
Linux Kernel Version @	3.10.0-514.26.2.el7.x86_64*	
Redis Version «	4.0.10*	
AOF Option 🖉	Default(everysec)+2	
Max memory Option.	30 GB 4	
Memtier benchmark version 🖉	1.2.13*	

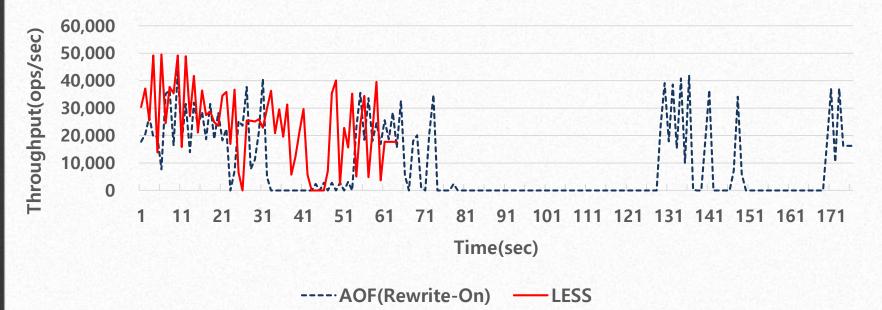
- Benchmark
 - Memtier-Benchmark v1.2.13
 - Workloads

•

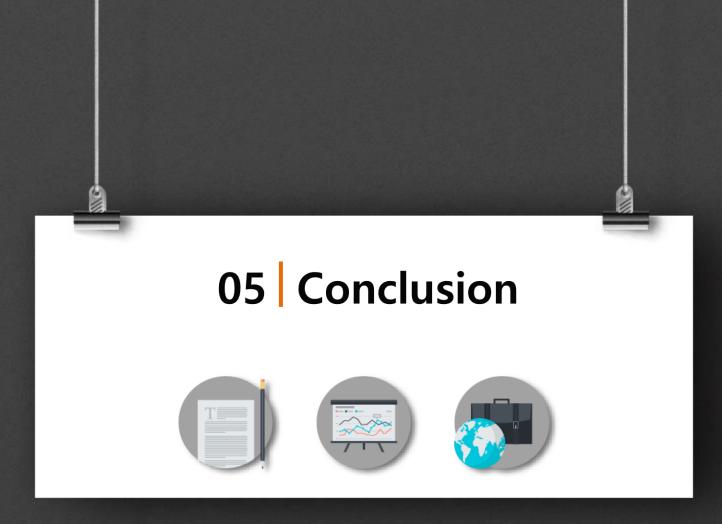

- Simulate workloads where updates occur frequently
- Key : 16B, Value : 10KB
- SET : Duplicate SET = 100,000 : 900,000
- Redis configuration
 - Redis v4.0.10
 - Maxmemory 30GB
 - AOF *fsync* option Everysec
 - Save No

Evaluation

Memory Usage

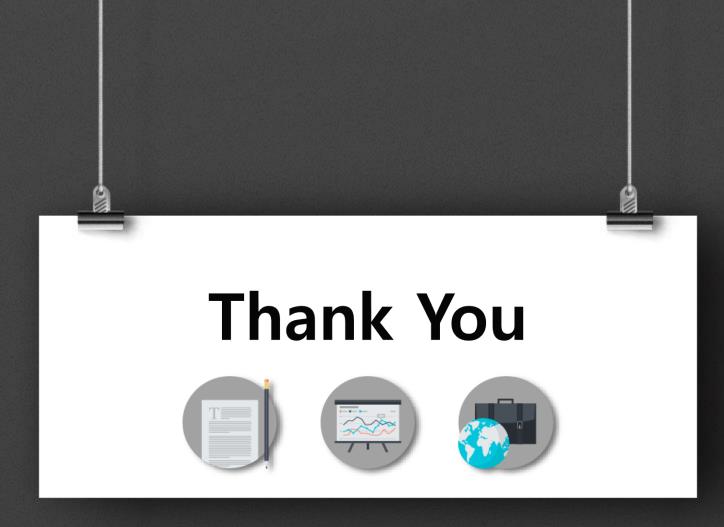


- Use the same workload as the workload used in motivation
- Average memory usage of LESS is less than AOF(Rewrite-on)
 - LESS write the log record in AOF directly
 - → LESS does not use <u>AOF Rewrite Buffer</u>
 - Can store more data than the original persistence method
- LESS has no time during which the use of the memory increases rapidly
- LESS is safe from <u>out-of-memory</u>


	57% Re	duction!!
	Average Memory usage	Maximum Memory usage
AOF	2.6GB	4.5GB
LESS	1.1GB	1.9GB

Evaluation

• Throughput


- LESS completed workload in 64s, whereas AOF mode completed the workload in 177s
- The LESS method, the child process generates a RDB file as opposed to an AOF file
- Since the merge operation in AOF Rewrite is not performed, the throughput is improved
 - ➔ Process more commands per second

Conclusion

- Data persistence method is required due to volatile characteristics of Dram
 - RDB(Snapshot) : Generate point-in-time snapshots of a dataset at specific intervals
 - AOF : Append log records in an AOF file when command to change memory status
 - AOF Rewrite : Reconstruction method that reduces the size of an AOF File
 - Issues
 - Memory overhead : Increase memory usage due to AOF Rewrite Buffer
 - Throughput degradation : Newly requested command delayed due to Flush operation
- Logging Exploiting SnapShot : High performance & Low memory usage
 - The child process generates a RDB file as opposed to an AOF file
 - The main process write log record for newly requested command to AOF File without using Rewrite Buffer
 - Manages RDB file and AOF without MERGE, eliminating FLUSH operation
- Evaluation
 - 57% reduction in average memory usage & maximum memory usage
 - 2.7x performance improvement than an AOF Rewrite method
 - Outperform in-memory Key-Value stores and ensure data persistence

