

Contents

1. Introduction

2. Background

3. Motivation

4. The design of LEAST

5. Evaluation

6. Conclusion

2 / 44

1. Introduction

• In-Memory Key-Value Store

• Redis Persistence Method (Basic)

• Redis Database (RDB)

• Append-Only File (AOF)

3 / 44

Introduction1

In-Memory Key-Value Store REmote DIctionary Server

ex) Redis, Memcached,

Apache Ignite, RAMCloud

4 / 44

Store data as key-value pair

Store all dataset in memory

High data processing performance

Provide persistence methods to preserve data

Provide various data structure

String, List, Set, Hash …

Single thread-based process

Risk of data loss

Support cluster and partitioning

Introduction1

RDB recovery operation process

5 / 44

RDB logging operation process

• Redis Database (RDB)

• Creates a snapshot of the data stored up to a certain point-in-time at regular intervals

Small log file size, Fast backup & recovery

Risk of data loss …

Introduction1

AOF logging operation process

6 / 44

AOF recovery operation process

• Append-Only File (AOF)

• Writes a log record in the AOF log file each time data is inserted, modified, or deleted

Ensure data persistence

Large log file size, Slow performance & recovery …

AOF Option (fsync)

• Always : Flush per command

• Everysec : Flush per Second

• No : Flush per 30 Seconds

2. Background

• Redis Persistence Method (Advanced)

• AOF Rewrite

• AOF-USE-RDB-PREAMBLE

7 / 44

Background2

AOF logging operation process

8 / 44

AOF Rewrite trigger condition

• AOF file size > threshold (64 MB)

• AOF Rewrite

• Reduce the AOF file size by preserving only the log records of the final state of the current dataset

Excessive growth of the AOF file size

• System failure

• Poor recovery performance

Redis uses fork to create a child process

• Main process: execute client requests

• Child process: reconstruct AOF file

Copy-on-write

Background2

9 / 44

• AOF Rewrite

Client

Request

Memory(DRAM)

Disk(HDD or SSD)

Main

Process

SET key1 value1

SET key3 value10

SET key1 value7

Dataset

key1 - value6

key2 - value4

key3 - value10

key4 - value5

SET key1 value6

SET key4 value5

SET key2 value3

SET key2 value4

Child

Process1. fork

2. Creating Temporary AOF File

& Generating SET Command Logs

SET key3 value10

SET key1 value6

SET key4 value5

SET key2 value4

AOF File Temp AOF File

AOF Buffer Rewrite Buffer

Append Command Logs

Dataset

key1 - value6

key2 - value4

key3 - value10

key4 - value5

key5 - value1

3. Store data

4. Store log record in AOF Buffer and

Rewrite Buffer

SET key5 value1 SET key5 value1

SET key5 value1

Background2

10 / 44

• AOF Rewrite

Client

Request

Memory(DRAM)

Disk(HDD or SSD)

Main

Process

SET key1 value1

SET key3 value10

SET key1 value7

Dataset
key1 - value6

key2 - value4

key3 - value10

key4 - value5

key5 - value1

SET key1 value6

SET key4 value5

SET key2 value3

SET key2 value4

Child

Process

5. Send a signal & Terminate Child process

AOF File Temp AOF File

SET key5 value1

AOF Buffer Rewrite Buffer

Dataset
key1 - value6

key2 - value4

key3 - value10

key4 - value5

6. Flush Rewrite Buffer

SET key3 value10

SET key1 value6

SET key4 value5

SET key2 value4

SET key5 value1

SET key5 value1

Background2

11 / 44

• AOF Rewrite

Client

Request

Memory(DRAM)

Disk(HDD or SSD)

Main

Process
Dataset

key1 - value6

key2 - value4

key3 - value10

key4 - value5

key5 - value1

AOF File

Temp AOF File

AOF Buffer Rewrite Buffer

8. Change AOF File descriptor

AOF File

7. Rename AOF File name

7. Remove

existing AOF file

SET key1 value1

SET key3 value10

SET key1 value7

SET key1 value6

SET key4 value5

SET key2 value3

SET key2 value4

SET key5 value1 SET key3 value10

SET key1 value6

SET key4 value5

SET key2 value4

SET key5 value1

• The AOF-USE-RDB-PREAMBLE method is a persistence method that uses a mixture of AOF and RDB• The AOF-USE-RDB-PREAMBLE method is a persistence method that uses a mixture of AOF and RDB

Background2

12 / 44

Client

Request

Memory(DRAM)

Disk(HDD or SSD)

Main

Process

SET key1 value1

SET key3 value10

SET key1 value7

Dataset

4. Store log record in AOF Buffer and

Rewrite Buffer

key1 - value6

key2 - value4

key3 - value10

key4 - value5

key5 - value1

SET key1 value6

SET key4 value5

SET key2 value3

SET key2 value4

Child

Process1. fork

2. Creating Temporary RDB File

& Create snapshot for current

dataset

key3 value10

key1 value6

key4 value5

key2 value4

AOF File Temp RDB File

3. Store data

SET key5 value1

AOF Buffer Rewrite Buffer

SET key5 value1 SET key5 value1

Dataset

key1 - value6

key2 - value4

key3 - value10

key4 - value5

Ensure data persistence Create a small file & Lower memory overhead
• AOF-USE-RDB-PREAMBLE

Append Command Logs

Background2

13 / 44

• AOF-USE-RDB-PREAMBLE

Client

Request

Memory(DRAM)

Disk(HDD or SSD)

Main

Process

SET key1 value1

SET key3 value10

SET key1 value7

Dataset

4. Store log record in AOF Buffer and

Rewrite Buffer

key1 - value6

key2 - value4

key3 - value10

key4 - value5

key5 - value1

SET key1 value6

SET key4 value5

SET key2 value3

SET key2 value4

Child

Process1. fork

2. Creating Temporary RDB File

& Create snapshot for current

dataset

key3 value10

key1 value6

key4 value5

key2 value4

AOF File Temp RDB File

3. Store data

SET key5 value1

AOF Buffer Rewrite Buffer

SET key5 value1 SET key5 value1

Dataset

key1 - value6

key2 - value4

key3 - value10

key4 - value5

Append Command Logs

Background2

14 / 44

RDB

AOF

• AOF-USE-RDB-PREAMBLE

Client

Request

Memory(DRAM)

Disk(HDD or SSD)

Main

Process

SET key1 value1

SET key3 value10

SET key1 value7

Dataset

key1 - value6

key2 - value4

key3 - value10

key4 - value5

key5 - value1

SET key1 value6

SET key4 value5

SET key2 value3

SET key2 value4

Child

Process

5. Send a signal &

Terminate Child process

AOF File Temp RDB File

SET key5 value1

AOF Buffer Rewrite Buffer

SET key5 value1

Dataset

key1 - value6

key2 - value4

key3 - value10

key4 - value5

6. Flush Rewrite Buffer

(combine RDB and AOF file)

key3 value10

key1 value6

key4 value5

key2 value4

SET key5 value1

Background2

15 / 44

• AOF-USE-RDB-PREAMBLE

Client

Request

Memory(DRAM)

Disk(HDD or SSD)

Main

Process
Dataset

key1 - value6

key2 - value4

key3 - value10

key4 - value5

key5 - value1

AOF File

Temp RDB File

AOF Buffer Rewrite Buffer

8. Change AOF File descriptor

AOF File

7. Rename

RDB File name7. Remove

existing AOF file

SET key1 value1
SET key3 value10

SET key1 value7

SET key1 value6

SET key4 value5

SET key2 value3

SET key2 value4

SET key5 value1
key3 value10

key1 value6

key4 value5

key2 value4

SET key5 value1

3. Motivation

• Memory Overhead

• Throughput Degradation

• Logging Overhead Test

• AOF Rewrite

• AOF-USE-RDB-PREAMBLE

16 / 44

• Log records for the newly requested command are stored in the AOF Buffer and Rewrite Buffer

➔ Increase memory usage

Motivation3

AOF Rewrite AOF-USE-RDB-PREAMBLE

17 / 44

• Memory Overhead

Duplicated

• Log records stored in the Rewrite Buffer are remained until the child process is terminated

➔ The state of increased memory usage is continued

• AOF Rewrite and AOF-USE-RDB-PREAMBLE may result in out-of-memory and system shutdown issues

Motivation3

AOF Rewrite AOF-USE-RDB-PREAMBLE

18 / 44

• Memory Overhead

Remained

Motivation3

19 / 44

• Memory Overhead

RDB
Deleted at the end of the child process

Rewrite buffer

SET key1 value1

SET key2 value2

SET key3 value3…

Accumulate log records until the child process ends

• Stored key-value pairs affect RDB generation time

• Memory occupancy occurs during RDB operation

Copy-on-write

• Flush operation incurs heavy disk I/O

• During a Flush operation, the requested command is delayed without execution

➔ Redis’ data processing performance is degraded

Motivation3

AOF Rewrite AOF-USE-RDB-PREAMBLE

20 / 44

• Throughput Degradation

Delayed

Motivation3

21 / 44

• Logging Overhead Test

Redis version 4.0.10

AOF Option everysec

Max Memory Option 50GB

Memtier-benchmark version 1.2.13

Redis setup

Memtier-benchmark Test Set

Clients 10

Total Requests 2,000,000

Request Type SET Duplicated SET

Num of Requests 200,000 1,800,000

Key Size (Byte) 16

Data Size (KByte) 10

Motivation3

22 / 44

• Logging Overhead Test

AOF Rewrite method overhead measurement

(x-axis: flow of time, y-axis: memory usage and throughput)

AOF Rewrite occurred

Motivation3

23 / 44

• Logging Overhead Test

AOF-USE-RDB-PREAMBLE method overhead measurement

(x-axis: flow of time, y-axis: memory usage and throughput)

AOF-USE-RDB-PREAMBLE occurred

4. The design of LEAST

• Logging Exploiting A Split snapshot (LEAST)

• LEAST Logging Mechanism

• LEAST Recovery Mechanism

24 / 44

The design of LEAST4

25 / 44

• LEAST Logging Mechanism

Client

Request

Memory(DRAM)

Disk(HDD or SSD)

Main

Process
Dataset

key1 - value6

key2 - value4

key3 - value10

key4 - value5

AOF Buffer Rewrite Buffer

SET key1 value1
SET key3 value10

SET key1 value7
SET key1 value6

SET key4 value5

SET key2 value3

SET key2 value4

AOF File

1. combine AOF and RDB

2. leverage data parallelism

3. exclude the use of Rewrite buffer

4. manage log files separately

5. restore a dataset using multiple log files

• LEAST trigger condition

• AOF file size > threshold (64 MB)

• Features of LEAST method

• Designed to reduce memory usage and improve data processing performance

• Perform AOF until LEAST is triggered

The design of LEAST4

26 / 44

• LEAST Logging Mechanism

Client

Request

Memory(DRAM)

Disk(HDD or SSD)

Main

Process
Dataset

key1 - value6

key2 - value4

key3 - value10

key4 - value5

Child

Process

2. fork

Dataset
key1 - value6

key2 - value4

key3 - value10

key4 - value5

Temp

AOF File

AOF Buffer Rewrite Buffer

C1. Allocate parallel threads

SET key1 value1
SET key3 value10

SET key1 value7
SET key1 value6

SET key4 value5

SET key2 value3

SET key2 value4

AOF File

1. Creating Temporary AOF File

& Change AOF File descriptor

key1 value6

Background thread pool

thread1 thread2

C2. Creating Temp PRDB Files

& Create partitioned snapshot

for current dataset

Temp

PRDB

File1

key3 value10Temp

PRDB

File2

• PRDB : Partitioned RDB

• Temp PRDB : Partitioned temporary RDB

The design of LEAST4

27 / 44

• LEAST Logging Mechanism

The design of LEAST4

28 / 44

• LEAST Logging Mechanism

Client

Request

Memory(DRAM)

Disk(HDD or SSD)

Main

Process
Dataset

key1 - value6

key2 - value4

key3 - value10

key4 - value5

Child

Process

2. fork

Dataset
key1 - value6

key2 - value4

key3 - value10

key4 - value5

Temp

AOF File

AOF Buffer Rewrite Buffer

SET key1 value1
SET key3 value10
SET key1 value7
SET key1 value6

SET key4 value5

SET key2 value3
SET key2 value4

AOF File

1. Creating Temporary AOF File

& Change AOF File descriptor

key1 value6

thread1 thread2

C2. Creating Temp PRDB Files

& Create partitioned snapshot

for current dataset

Temp

PRDB

File1

key3 value10Temp

PRDB

File2

Background thread pool

key2 value4 key4 value5

Not used C1. Allocate parallel threads

SET key5 value1

SET key5 value1

key5 - value1

3. Store data

4. Store log record in AOF Buffer

The design of LEAST4

29 / 44

• LEAST Logging Mechanism

• LEAST method does not perform Flush operation ➔ Reduce the amount of disk I/O

Client

Request

Memory(DRAM)

Disk(HDD or SSD)

Main

Process
Dataset

key1 - value6

key2 - value4

key3 - value10

key4 - value5

key5 - value1

Temp

AOF File

AOF Buffer Rewrite Buffer

SET key1 value1
SET key3 value10

SET key1 value7
SET key1 value6

SET key4 value5

SET key2 value3

SET key2 value4

AOF File

key1 value6

key2 value4

Temp

PRDB

File1

key3 value10

key4 value5

Temp

PRDB

File2

AOF File

6. Rename Temporary

AOF File6. Remove the

old AOF File

SET key5 value1

Child

Process
Dataset

key1 - value6

key2 - value4

key3 - value10

key4 - value5

5. Terminate Child process & Send a signal

The design of LEAST4

30 / 44

• LEAST Logging Mechanism

Client

Request

Memory(DRAM)

Disk(HDD or SSD)

Main

Process
Dataset

key1 - value6

key2 - value4

key3 - value10

key4 - value5

key5 - value1

AOF File

AOF Buffer Rewrite Buffer

key1 value6

key2 value4

Temp

PRDB

File1

key3 value10

key4 value5

Temp

PRDB

File2

PRDB

File1

PRDB

File2

7. Rename All Temp PRDB Files
SET key5 value1

The design of LEAST4

31 / 44

• LEAST Logging Mechanism

Client

Request

Memory(DRAM)

Disk(HDD or SSD)

Main

Process
Dataset

key1 - value6

key2 - value4

key3 - value10

key4 - value5

key5 - value1

AOF Buffer Rewrite Buffer

AOF File
SET key5 value1 key1 value6

key2 value4
PRDB

File1

key3 value10

key4 value5
PRDB

File2

• LEAST method manages log files separately ➔ Reduce occurrence of disk I/O

The design of LEAST4

32 / 44

• LEAST Recovery Mechanism

• During LEAST operation, up to four types of files are generated

✓ AOF File

✓ Temp AOF File

• LEAST creates a different types of files for each step

• By examining files stored on disk, Redis can infer when a system failure occurred

✓ PRDB File

✓ Temp PRDB File

System failure occurred after

Temp AOF rename !!!

The design of LEAST4

33 / 44

• LEAST Recovery Mechanism

When failure occurs during LEAST operation List of files present on disk Recovery order of LEAST

Before the LEAST operates
PRDBs,

AOF

1) PRDBs

2) AOF

Before starting parallel RDB creation

PRDBs,

Temp AOF,

AOF

1) PRDBs

2) AOF

3) Temp AOF

During parallel RDB creation

Temp PRDBs,

Temp AOF,

PRDBs,

AOF

1) PRDBs

2) AOF

3) Temp AOF

After temporary AOF rename

Temp PRDBs,

PRDBs,

AOF

1) Temp PRDBs

2) AOF

During Temp PRDB rename

Renamed Temp PRDBs,

Temp PRDBs,

AOF

1) Renamed Temp PRDBs

2) Temp PRDBs

3) AOF

After Temp PRDB rename
PRDBs,

AOF

1) PRDBs

2) AOF

Recovery mechanism of LEAST in each case

5. Evaluation

• Experimental Setup

• Comparison of Logging Overhead

• The Effect of the Number of Threads on RDB

• RDB Creation Time

• RDB Recovery Time

• The Effect of the Number of Threads on LEAST

• Performance Evaluation

• Throughput

• Maximum Memory Usage

• Average Memory Usage

• Recovery Time

34 / 44

Evaluation5

35 / 44

• Experimental Setup

Hardware setup

CPU Intel(R) Xeon(R) CPU E5-2660 v2 @ 2.20GHz

DRAM DDR3 64GB

SSD Crucial_CT250MX200SSD1 250 GB * 3

Software setup

OS Cent OS 7.3.1611 (Core)

Kernel version 3.10.0-514.26.2.el7.x86_64

Redis version 4.0.10

AOF Option everysec

Max Memory Option 50GB

Memtier-benchmark version 1.2.13

Evaluation5

36 / 44

• Comparison of Logging Overhead

Memory usage

(x-axis: flow of time, y-axis: memory usage)

Throughput

(x-axis: flow of time, y-axis: throughput)

• Logging overhead is measured by simulating a situation with high frequency of updates

• LEAST method has the lowest memory usage and the fastest data processing performance

Evaluation5

37 / 44

• The Effect of the Number of Threads on RDB

RDB Creation Time RDB Recovery Time

(x-axis: number of requests (upper) and size of values (lower), y-axis: time)

• RDB Creation Time

▪ As the number of threads increases…

✓ the amount of time to complete

RDB creation decreases

✓ the ratio of time reduction gradually

decreases

• RDB Recovery Time

▪ As the number of threads increases…

✓ the number of PRDB files generated

also increases

✓ the time to restore dataset was

similar in all cases

Evaluation5

38 / 44

• The Effect of the Number of Threads on LEAST

Comparison of the results of changing the number of threads in LEAST method

Num of threads AOF file size PRDB file size

2 627 MB 14 MB per file

4 818 MB 7 MB per file

8 219 MB 3.5 MB per file

16 1.8 GB 1.6 MB per file

Size of the log files created after the workload is performed

• To measure logging overhead, workload with

frequent updates is used

• The best results are in the case of 8 threads

✓ Throughput

✓ Execution time

✓ Recovery time

• Recovery time depends on the size of AOF file

• Measure the overhead of LEAST according to the number of threads used

Evaluation5

39 / 44

• Performance Evaluation

Throughput for various number of requests and sizes of values applied

(x-axis: number of requests (upper) and size of values (lower), y-axis: throughput)

• Comparison of throughput AOF Rewrite, AOF-USE-RDB-PREAMBLE, LEAST in various environment

• Redis with LEAST method achieves the fastest data processing performance

Evaluation5

40 / 44

• Performance Evaluation

Maximum memory usage for various number of requests and sizes of values applied

(lower memory usage is better)

• Comparison of maximum memory usage AOF Rewrite, AOF-USE-RDB-PREAMBLE, LEAST in various

environments

• LEAST shows almost constant maximum memory usage ➔ Safe from out-of-memory

Evaluation5

41 / 44

• Performance Evaluation

Average memory usage measurement results for various workloads

• Comparison of average memory usage AOF Rewrite, AOF-USE-RDB-PREAMBLE, LEAST in various

environments

Value size Number of Requests AOF Rewrite AOF-USE-RDB-PREAMBLE LEAST

0.5 KB

100,000 42.62 MB 41.89 MB 41.78 MB

500,000 44.82 MB 44.51 MB 39.99 MB

1,000,000 51.11 MB 44.89 MB 43.68 MB

1 KB

100,000 90.5 MB 89.16 MB 69.97 MB

500,000 140.45 MB 105.05 MB 74.31 MB

1,000,000 169.14 MB 146.52 MB 81.4 MB

10 KB

100,000 1.28 GB 1.01 GB 0.74 GB

500,000 2.32 GB 1.42 GB 0.93 GB

1,000,000 2.51 GB 2.53 GB 0.94 GB

100 KB

100,000 11.6 GB 6.97 GB 5.79 GB

500,000 9.95 GB 8.21 GB 6.67 GB

1,000,000 11.47 GB 9.22 GB 6.77 GB

Evaluation5

42 / 44

• Recovery Time

Recovery time for various numbers of requests and sizes of values applied

• Use log files generated after each operation performed in performance evaluation

• All three persistence methods recover the data completely

• In most cases, LEAST's recovery time is shorter than that of the existing methods

Conclusion6

• In summary,

• analyze logging overhead of AOF Rewrite and AOF-USE-RDB-PREAMBLE

1. Memory overhead: Rewrite buffer & Copy-on-write

2. Throughput degradation: Flush operation(Heavy disk I/O)

43 / 44

• propose novel design of persistence method leveraging data parallelism and snapshot

1. Combine AOF and RDB → guarantee data persistence & maintain minimal memory usage

2. Parallel RDB generation → improve RDB generation performance

3. Exclude the use of Rewrite buffer → reduce memory usage

4. Manage log files separately → reduce heavy disk I/O

5. Recovery mechanism that uses multiple log files

• improve RDB generation performance

• show better throughput and lower memory usage compared to the existing persistence methods

• after system failure, system can reactivate normally through fast data recovery

End.

Q & A

44 / 44

