

Index

• INTRODUCTION
• SYSTEM OVERVIEW
• QUERY FEATURIZATION
• DRL FOR KNOB TUNING
• QUERY CLUSTERING
• EXPERIMENT

2

Index

• INTRODUCTION
• SYSTEM OVERVIEW
• QUERY FEATURIZATION
• DRL FOR KNOB TUNING
• QUERY CLUSTERING
• EXPERIMENT

3

Traditional tuning (DBA)

• Limitation
• DBAs can only tune a small percentage of the knobs and may not find a good

global knob configuration
• DBAs require to spend a lot of time
• DBAs are usually good at tuning a only specific database

•  These limitations are extremely severe for tuning cloud databases, because they
have to tune a lot of database instances on different environments (e.g., different
CPU, RAM and disk).

4

Automatic knob tuning

• BestConfig
• OtterTune
• CDBTune

5

Automatic knob tuning

• BestConfig
• heuristic method to search for the optimal configuration from the

history and may not find good knob values if there is no similar
configuration in the history

6

Automatic knob tuning

• OtterTune
• machine-learning techniques to collect, process and analyze knobs

and tunes the database by learning DBAs’ experiences from the
historical data

• relies on a large number of high-quality training examples from
DBAs’ experience data, which are rather hard to obtain

7

Automatic knob tuning

• CDBTune
• deep reinforcement learning (DRL) to tune the database by using a

try-and error strategy

• has 3 limitations

8

CDBTune - limitation

• First
• CDBTune requires to run a SQL query workload multiple times in the database to

get an appropriate configuration, which is rather time consuming

• Second
• CDBTune only provides a coarse-grained tuning (i.e., tuning for read-only

workload, read-write workload, write-only workload), but cannot provide a fine-
grained tuning (i.e., tuning for a specific query workload).

• Third
• it directly uses the existing DRL model, which assumes that the environment can

only be affected by reconfiguring actions, but cannot utilize the query
information, which is more important for configuration tuning and environment
updates.

9

Proposed model (Qtune)

• Step
• first featurizes the SQL queries by considering rich features of the SQL

queries(query type, tables, and query cost)

• Then feeds the query features into the DRL model to dynamically choose
suitable configurations

10

Index

• INTRODUCTION
• SYSTEM OVERVIEW
• QUERY FEATURIZATION
• DRL FOR KNOB TUNING
• QUERY CLUSTERING
• EXPERIMENT

11

Three types of tuning requests

• Query-level Tuning
• Workload-level Tuning
• Cluster-level Tuning

12

Three types of tuning requests

• Query-level Tuning
• For each query, it first tunes the database knobs and then executes the query
• can optimize the latency(=low latency)
• but may not achieve high throughput.

• Because query-level tuning cannot run ths SQL queries in parallel

13

Three types of tuning requests

• Workload-level Tuning
• It tunes the database knobs for the whole query workload
• cannot optimize the query latency
• can achieve high throughput

• Because it cannot find a good configuration for every SQL query

14

Three types of tuning requests

• Cluster-level Tuning
• It partitions the queries into different groups
• Next it tunes the knobs for each query group and executes the queries in each

group in parallel. This method can optimize both the latency and throughput.

• Because it can find the good configuration for a group of queries and run the
queries in each group in parallel

15

Index

• INTRODUCTION
• SYSTEM OVERVIEW
• QUERY FEATURIZATION
• DRL FOR KNOB TUNING
• QUERY CLUSTERING
• EXPERIMENT

16

QUERY FEATURIZATION

• 3.1 Query Information

• 3.2 Cost Information

• 3.3 Character Encoding

17

3.1 Query Information

• SQL query
• Query type(e.g., insert, delete, select, update), table,

attributes, operations(e.g., selection, join, groupby)

• Query type - different query types have different query cost

• Tables - data volumes and structures of tables will signficantly affect
the database performance

18

3.1 Query Information

• Note that we do not featurize the attributes (i.e., columns) and operations
(i.e., selection conditions) due to three reasons.

• First, the query cost will capture the operation information and cost, and we
do not need to maintain duplicated information.

• Second, operations are too specific and adding specific operations into the
vectors will reduce the generalization ability.

• Third, the attributes and operations will be frequently updated and it requires
to redesign the model for the updates.

• Query information  4 + |T| dimensional vector
• 4 : query types, (e.g., insert, select, update, delete).
• |T| : table

19

3.2 Cost Information

• utilize the query plan generated by
the query optimizer, which has a cost
estimation for each operation.

• Fig3 is the vector of a SQL query.

20

3.3 Character Encoding

• To tune the database for this query workload, we need to combine the
vectors together

• concatenate the query vector and cost vector to generate an
overall vector of a query

• for each query vector, we need to consider all the query types and
tables, and thus we compute the union of the query vectors.

• And for each table, if the value is 1, we replace it with the row number
of the table. Thus it can capture the actions like deleting/inserting
rows and improve system's adaptivity

• for cost vector, we need to sum up all the costs

21

Index

• INTRODUCTION
• SYSTEM OVERVIEW
• QUERY FEATURIZATION
• DRL FOR KNOB TUNING
• QUERY CLUSTERING
• EXPERIMENT

22

DRL FOR KNOB TUNING

• Since there are hundreds of knobs in a database and many of them are in
continuous space, the database tuning problem is NP hard and it is rather
expensive to find highquality configurations.

• We utilize the deep reinforcement learning model, which combines
reinforcement learning and neural networks to automatically learn the knob
values from limited samples.

• existing DRL models cannot utilize the query features as they ignore the
effects to the environment state from the query, and we propose a Double-
State Deep Deterministic Policy Gradient (DS-DDPG) model to enable
query-aware tuning

23

4.1 DS-DDPG

24

4.1 DS-DDPG

• Environment
• contains the database information, which includes the inner state (i.e., knob

configurations) and the outer metrics (e.g., database key performance indicators).

• Query2Vector
• generates the feature vector for a given query (or a workload).

25

4.1 DS-DDPG

• Environment
• contains the database information, which includes the inner state (i.e., knob

configurations) and the outer metrics (e.g., database key performance indicators).

• Query2Vector
• generates the feature vector for a given query (or a workload).

• Predictor
• is a deep neural network, which predicts the changes in outer metrics (Δ𝑆𝑆) of

before/after processing the queries.
• observation S’ = S + Δ𝑆𝑆 (S : original metrics)

• Agent
• is used to tune the inner state based on the observation S’. Agent contains two

modules, Actor and Critic, which are two independent neural networks.

26

4.1 DS-DDPG

Actor
• takes S’ as input, and outputs an action (a

vector of tuned knob configurations).
Environment executes the query workload
and computes a reward based on the
performance.

Critic
• takes the observation S’ and the action as

input, and outputs a score (Q-value), which
reflects whether the action tuning is effective.

27

• updates the weights of its neural network
based on the reward value.

• updates the weights of its neural network
based on the Q-value

Query2Vector
Predictor
(network)

Environment

Outer metric Insert state

Critic
(network)

Actor
(network)

Agent

(1)

Queries

(2)

Features

(3) ∆𝑆𝑆 (7) Queries

(4) Observation (S’)

(5)
Action(8) Reward

(6) Score

(5) Action

(2)

Step 1
Query2Vector가 주어진 쿼리로부터
Feature vector를 생성

• Input : Queries
• Ouput : Features

28

Query2Vector
Predictor
(network)

Environment

Outer metric Insert state

Critic
(network)

Actor
(network)

Agent

(1)

Queries

(2)

Features

(3) ∆𝑆𝑆 (7) Queries

(4) Observation (S’)

(5)
Action(8) Reward

(6) Score

(5) Action

(2)

Step 2
Query 실행 후의 Outer metrics 변화
량 예측

• Outer metrics of before/afte

r processing the query

• Difference

• ∆𝑺𝑺

∆𝑺𝑺 : query 작업을 진행하기 전과
후의 Outer metrics 차이값

• Input : Features
• Ouput : ∆𝐒𝐒

29

Query2Vector
Predictor
(network)

Environment

Outer metric Insert state

Critic
(network)

Actor
(network)

Agent

(1)

Queries

(2)

Features

(3) ∆𝑆𝑆 (7) Queries

(4) Observation (S’)

(5)
Action(8) Reward

(6) Score

(5) Action

(2)

Step 3
Query 실행 후의 Outer metrics 값 계산

𝑺𝑺′ = 𝑺𝑺 + ∆𝑺𝑺

• 𝑺𝑺 : 기존의 Outer metrics 값,
query 작업 진행하기 전의 Outer
metrics 값

• ∆𝑺𝑺 : query 작업을 진행하기 전과
후의 Outer metrics 차이값

• 𝑺𝑺′ : 기존 Outer metrics 값에
query 작업을 진행한 결과가 반영
된 값

• Input : ∆𝐒𝐒
• Ouput : 𝐒𝐒𝐒

30

Query2Vector
Predictor
(network)

Environment

Outer metric Insert state

Critic
(network)

Actor
(network)

Agent

(1)

Queries

(2)

Features

(3) ∆𝑆𝑆 (7) Queries

(4) Observation (S’)

(5)
Action(8) Reward

(6) Score

(5) Action

(2)

Step 4
New Knob values(Action) 획득

• Input : 𝑺𝑺𝑺
• Ouput : action

31

Query2Vector
Predictor
(network)

Environment

Outer metric Insert state

Critic
(network)

Actor
(network)

Agent

(1)

Queries

(2)

Features

(3) ∆𝑆𝑆 (7) Queries

(4) Observation (S’)

(5)
Action(8) Reward

(6) Score

(5) Action

(2)

• Input : 𝑺𝑺𝑺, action
• Ouput : Score Step 5

Query를 실행하고 난 후의
outer metrics 예측

Actor의 Weight update

32

Query2Vector
Predictor
(network)

Environment

Outer metric Insert state

Critic
(network)

Actor
(network)

Agent

(1)

Queries

(2)

Features

(3) ∆𝑆𝑆 (7) Queries

(4) Observation (S’)

(5)
Action(8) Reward

(6) Score

(5) Action

(2)

Step 6
New knob values에 대한 Reward 계산

• Input : Queries, action
• Ouput : Reward

Action(New Knob values)로 update

Query 실행 후 Performance 비교

Reward 계산

33

4.2 Training DS-DDPG

• 4.2.1 Training the Predictor
• 4.2.2 Training the Actor-Critic Module

34

4.2.1 Training the Predictor
• Predictor aims to predict the

database metrics change if
processing a query in the
database.

• For each < 𝒗𝒗, 𝑺𝑺, 𝑰𝑰 >, we train
Predictor to output a value that
is close to 𝚫𝚫𝚫𝚫

• 𝑣𝑣 : a vector of a query

• 𝑆𝑆: the outer metrics

• 𝐼𝐼 : inner state

• ∆𝑆𝑆 : the outer metrics change

• G : the output value by Predictor for query
qi,

• U : the query set.

• E : error function
35

𝑇𝑇𝑃𝑃 = {< 𝑣𝑣, 𝑆𝑆, 𝐼𝐼,∆𝑆𝑆 >}

< 𝑣𝑣, 𝑆𝑆, 𝐼𝐼 >
Predictor
(network)

∆𝑆𝑆

4.2.2 Training the Actor-Critic Module

• The agent (the Actor-Critic module) aims to judiciously tune the
database configurations

1) We generate its feature vector in via Query2Vector

2) Predict a database metrics 𝑆𝑆𝑆1 via Predictor

3) Get an action 𝐴𝐴1 via Actor

4) Deploy the actions in the database

5) Run the database to get reward 𝑅𝑅1

• In the next step, we get a new database metrics 𝑺𝑺𝑺𝟐𝟐 by updating 𝑺𝑺𝑺𝟏𝟏
using the new metrics, and repeat The above steps to get 𝐴𝐴2 and 𝑅𝑅2
Until the average reward value is good enough(the average reward of
ten runs is larger than 10)

36

𝑇𝑇𝑃𝑃1 =< 𝑆𝑆1′ ,𝐴𝐴1,𝑅𝑅1 , 𝑆𝑆2′ ,𝐴𝐴2,𝑅𝑅2 , … , (𝑆𝑆𝑡𝑡′,𝐴𝐴𝑡𝑡,𝑅𝑅𝑡𝑡) >

4.2.2 Training the Actor-Critic Module

37

Index

• INTRODUCTION
• SYSTEM OVERVIEW
• QUERY FEATURIZATION
• DRL FOR KNOB TUNING
• QUERY CLUSTERING
• EXPERIMENT

38

5.1 Configuration Pattern
• DS-DDPG to generate a continuous knob configuration and take the knob

configuration as the pattern
 But It is expensive to get the continuous knob values,

approximate patterns are good enough to cluster the queries

• So we discretize the continuous values into discrete values (i.e. {-1, 0, +1})

• we only choose knobs most frequently tuned by DS-DDPG as the features (e.g.,
20 knobs in PostgreSQL)

But the new knob space is still very large (e.g. in PostgreSQL 3^20)
= The traditional machine learning methods or regression models are hard to
solve this problem

Using Deep Learning
(input : feature vector, output : pattern)

39

5.2 Query Clustering

• After gaining the suitable configuration pattern for each query, we
classify the queries into different clusters based on the similarity of
these patterns

• we take DBSCAN(Density-based spatial clustering of applications with noise) as a
clustering algorithms

40

Index

• INTRODUCTION
• SYSTEM OVERVIEW
• QUERY FEATURIZATION
• DRL FOR KNOB TUNING
• QUERY CLUSTERING
• EXPERIMENT

41

42

43

(1) Randomly Choosing : We permute the knobs in a random way. If we tune k knobs, we
select the first k knobs.
(2) Important first : We sort the knobs based on their importance (e.g., which knobs were
tuned more in the query workload).

44

E1 : uses query type, tables, costs

E2 : uses query type, tables, costs, attributes,
operations

45

46

Proposed model (Qtune)

• (1) We propose a query-aware database tuning system using deep reinforcement
learning, which provides three database tuning granularities

• (2) We propose a SQL query featurization model that featurizes a SQL query to a
vector by using rich SQL features

• (3) We propose the DS-DDPG model, which embeds the query features and utilizes
the actor-critic algorithm to learn the relations among queries, database state and
configurations to tune database configurations

• (4) We propose a deep learning based query clustering method to classify queries
according to the similarity of their suitable configurations

47

V*

• Query2Vector generates a feature vector for each query in
the workload and merges them to generate a unfied
vector.( V*)

48

튜닝시 DB 직접 실행
• it first tunes the database knobs and then executes the query.

• the session-level knobs (e.g., bulk write size) can be concurrently tuned for different
queries, while the system-level knobs (e.g., working memory size) cannot be
concurrently tuned because when we tune these knobs for a query, the system
cannot process other queries.

49

튜닝시 DB 직접 실행

50

Query plan, query optimizer

• DBMS에 내장된 optimizer를 통해 계산(selection cost, join cost)

51

https://www.oracle.com/search/results?Ntt=query%20plan&Dy=1&Nty=1&cat=mysql&Ntk=SI-ALL5
https://www.postgresql.org/docs/10/using-explain.html
https://docs.mongodb.com/manual/core/query-plans/

https://www.oracle.com/search/results?Ntt=query%20plan&Dy=1&Nty=1&cat=mysql&Ntk=SI-ALL5
https://www.postgresql.org/docs/10/using-explain.html

Predictor의 outer metrics

• Database의 metric을 의미 (e.g., latency, throughput)

52

Experiment

• As restarting database is not acceptable in many real business applications, here we
only use the knobs that do not need to restart databases.

• MongoDB is a document-oriented NoSQL Database. It uses json format queries
rather than SQL. To run a SQL benchmark, we convert the data sets into json
documents before injecting them into the database and transforms the SQL queries
to json format queries.

• use three query workloads JOB, TPC-H and Sysbench.

53

• http://initd.org/psycopg,scikit-learn.org,numpy.org
• https://www.mongodb.com/
• https://github.com/gregrahn/join-order-benchmark
• http://www.tpc.org/tpch/
• https://github.com/akopytov/sysbench

54

	슬라이드 번호 1
	Index
	Index
	Traditional tuning (DBA)
	Automatic knob tuning
	Automatic knob tuning
	Automatic knob tuning
	Automatic knob tuning
	CDBTune - limitation
	Proposed model (Qtune)
	Index
	Three types of tuning requests
	Three types of tuning requests
	Three types of tuning requests
	Three types of tuning requests
	Index
	QUERY FEATURIZATION
	3.1 Query Information
	3.1 Query Information
	3.2 Cost Information
	3.3 Character Encoding
	Index
	DRL FOR KNOB TUNING
	4.1 DS-DDPG
	4.1 DS-DDPG
	4.1 DS-DDPG
	4.1 DS-DDPG
	슬라이드 번호 28
	슬라이드 번호 29
	슬라이드 번호 30
	슬라이드 번호 31
	슬라이드 번호 32
	슬라이드 번호 33
	4.2 Training DS-DDPG
	4.2.1 Training the Predictor
	4.2.2 Training the Actor-Critic Module
	4.2.2 Training the Actor-Critic Module
	Index
	5.1 Configuration Pattern
	5.2 Query Clustering
	Index
	슬라이드 번호 42
	슬라이드 번호 43
	슬라이드 번호 44
	슬라이드 번호 45
	슬라이드 번호 46
	Proposed model (Qtune)
	V*
	튜닝시 DB 직접 실행
	튜닝시 DB 직접 실행
	Query plan, query optimizer
	Predictor의 outer metrics
	Experiment
	슬라이드 번호 54

