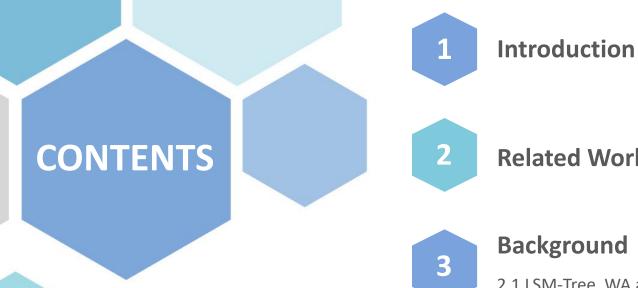
RTune: A RocksDB Tuning System with Deep Genetic Algorithm


연세대학교 컴퓨터과학과 JIN HUIJUN 2022년 8월

과제명: loT 환경을 위한 고성능 플래시 메모리 스토리지 기반 인메모리 분산 DBMS 연구개발

과제번호: 2017-0-00477

Related Work

Background

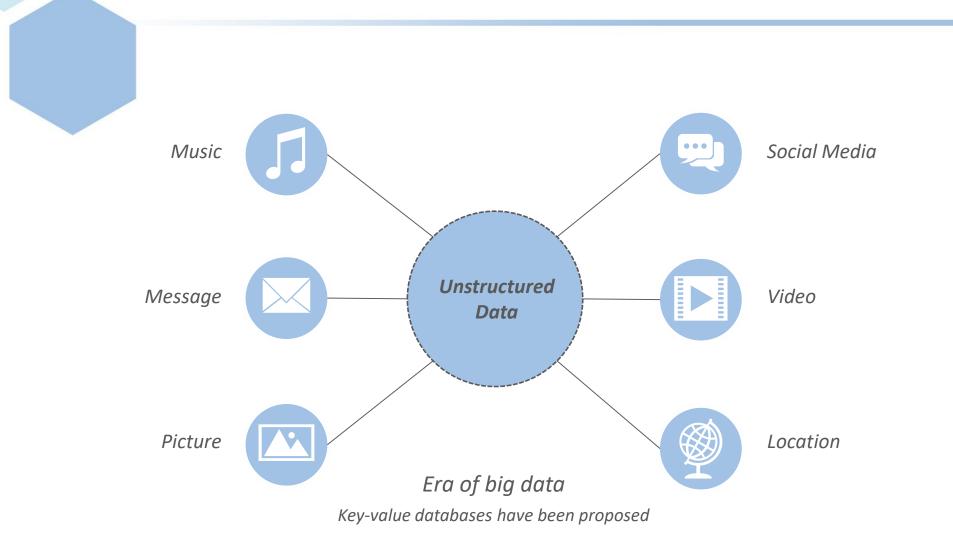
2.1 LSM-Tree, WA and SA 2.2 Mahalanobis Distance

Method

3.1 Data Generation 3.2 Design

Evaluation

4.1 Experimental Setup 4.2 Results


Conclusion

Introduction

Introduction

RocksDB

- Disk-based key-value database
- Use Log-structured Merge-tree (LSM-tree)

LSM-Tree

- Write amplification (WA)
 - Decrease data processing performance
 - Decline the lifespan
- Space amplification (SA)
 - Increasing space usage

Reduce WA and SA by tuning RocksDB knobs

- Too many factors for performance tuning
 - Knobs, workload, hardware

RTune : RocksDB tuning system

- Contributions:
 - Generated RocksDB data repository.
 - > New workload representation for dimension reduction.
 - Created combined workloads that are as close to the target workload as possible.
 - > Novel score function to train a DNN model.
 - > Use a genetic algorithm with a trained DNN model to find the best solutions.

Related Work

Model	Optimization Target	Total Tuning time	Data Repository Dependency	Main Techniques	Target Database	Workload Mapping
OtterTune (2017)	Throughput Latency	60 min	0	Lasso repression GP	MySQL Postgres Vector	Euclidean distance
BestConfig (2017)	Throughput	-	X	DDS RBS	MySQL Cassandra Hive	X
CDBTune (2019)	Throughput Latency	<i>Offline: 2.3 h</i> <i>Online: 25 min</i>	X	DDPG	MySQL Postgres MongoDB	X
Multi-Task (2021)	IOPS	10 iterations	X	Multitask Clustering	RocksDB	Х
RTune	TIME, RATE, WAF, SA	15 min	X	DNN, GA	RocksDB	Combined Workload

LSM-Tree, WA and SA

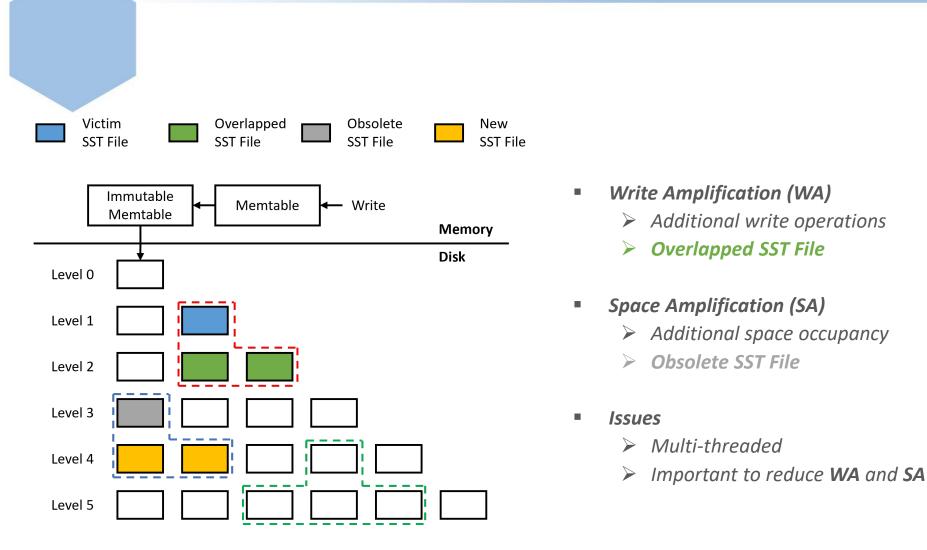
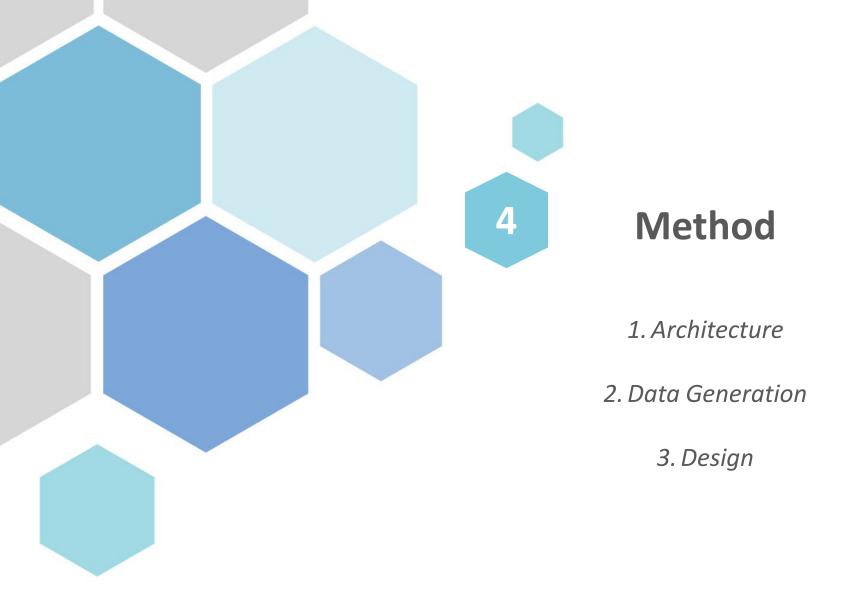


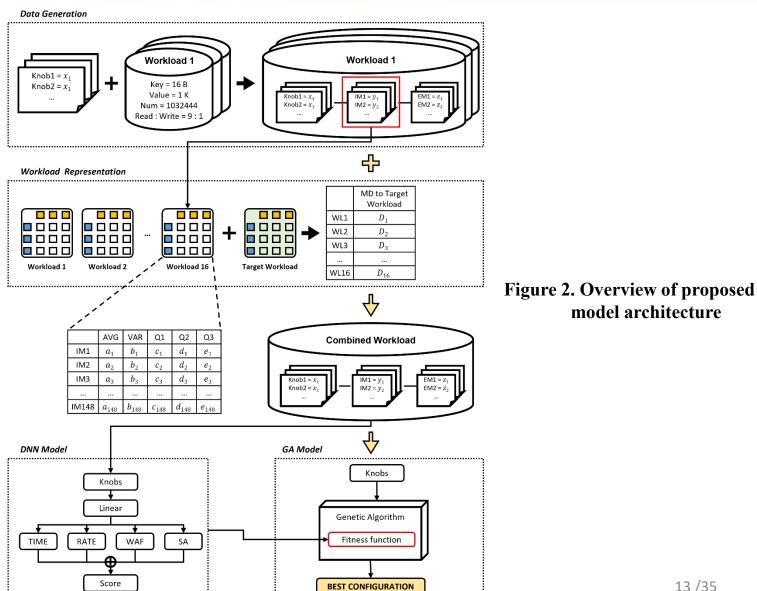
Figure 1. LSM-Tree and compaction

Mahalanobis Distance



- Euclidean Distance
 - $\succ D_E(\vec{x}) = (\vec{x} \vec{\mu})^{\mathrm{T}} (\vec{x} \vec{\mu})$

- Mahalanobis Distance (MD)
 - Consider the variance between data


►
$$D_M(\vec{x}) = \sqrt{(\vec{x} - \vec{\mu})^{\mathrm{T}} \mathbf{S}^{-1} (\vec{x} - \vec{\mu})}$$

Architecture of proposed model

.....

.....

13/35

YONSEI UNIVERSITY

Data Generation

- **DB_Bench** : RocksDB benchmarking tool.
 - Internal Metrics(IM) : Configuration, workload, I/O status, etc.
 - External Metrics(EM) : TIME, RATE, WAF, SA
- Knobs
 - Selected **22** *knobs* refer to official sites.
 - Generated 20,000 random configurations (set of knobs).
- Workload
 - > 16 workloads with size of 1 GB each.
 - > Different value sizes, # of entries, read-write ratio, update.
 - > Key size : **16** B

Data Generation

Table 1. Basic workloads.

Workload Index	Value Size (B), # of Entry	Read : Write	Update
0	1024, 1032444	9:1	-
1 1024, 1032444		1:1	_
2	1024, 1032444	1:9	-
3	1024, 1032444	-	TRUE
4	4096, 261124	9:1	-
5	4096, 261124	1:1	-
6	4096, 261124	1:9	-
7	4096, 261124	-	TRUE
8	16384, 65472	9:1	-
9	16384, 65472	1:1	_
10	16384, 65472	1:9	-
11	16384, 65472	-	TRUE
12	65536, 16380	9:1	-
13	65536, 16380	1:1	-
14	65536, 16380	1:9	_
15	65536, 16380	-	TRUE

15/35

Workload Representation

- 20,000 [Configuration IM EM] pairs for each workload.
- *IM* include information for a workload.
- Represent a workload by IM.
- Disadvantages :
 - > **Huge** size of table.
 - > **Expensive** to proceed with various calculations.

Table 2. Original workload representation.

Configuration #	1	2	••••	20000
IM 1	12965	13040		14586
IM 2	1239	837		297
IM n	44	63	78	208

Workload Representation

- Use 5 statistics [Average, Variance, 1st Quartile, 2nd Quartile, 3rd Quartile] of 20,000 data of each internal metrics.
- Advantages :
 - Dimension reduction
 - > **Easy** to proceed with various calculations.

Table 3. New workload representation.

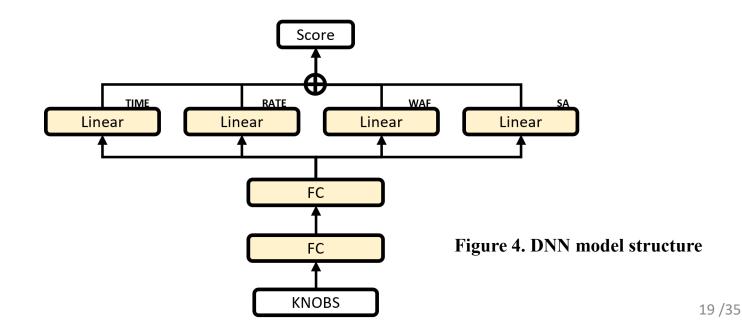
	Average	Variance	1st Quartile	2nd Quartile	3rd Quartile
IM 1	13544	55615	10513	13448	15798
IM 2	834	2315	564	912	1132
	••••				
IM n	80	1213	68	81	121

Combined Workload

Figure 3. Combined workload calculation process

■ Distance → similarity

- Calculate the proportion of each basic workload data to be included in CW
- 20,000 [Configuration IM EM] pairs in CW



Deep Neural Network Model

- Train **DNN** model with CW
 - > Input : **Configurations**
 - > Output : Prediction for **4** EM.
- Score function

$$Score = \alpha_1 \frac{TIME_D}{TIME_P} + \alpha_2 \frac{RATE_P}{RATE_D} + \alpha_3 \frac{WAF_D}{WAF_P} + \alpha_4 \frac{SA_D}{SA_P}$$
$$\alpha_1 = \alpha_2 = \alpha_3 = \alpha_4 = 0.25$$

Deep Neural Network Model

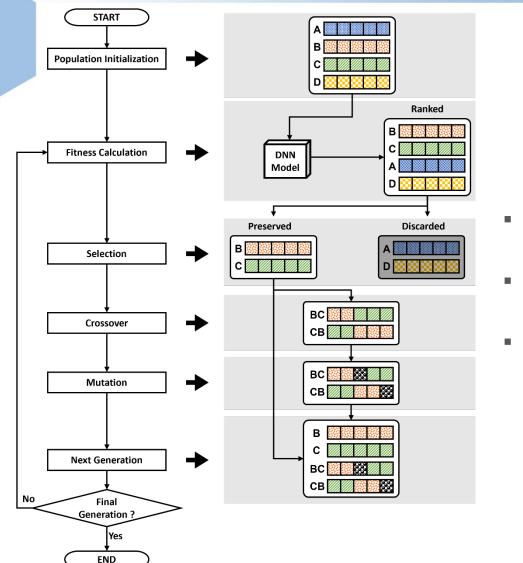


 Table 4. Hyperparameters of DNN model.

Optimizer	Adamw	
Learning Rate	0.0002	
Epoch	300	
Loss Function	MSE	
X Scaler	MinMaxScaler	
Y Scaler	StandardScaler	
Layer	(22, 64, 16, 1)	
Activation Function	ReLU	

Genetic Algorithm

- DNN model → Fitness calculation
- Mutant knob → New knob
- Highest fitness score → Optimal solution

Figure 5. Genetic Algorithm

Genetic Algorithm

 Table 5. Hyperparameters of GA model.

Mutation Ratio	0.4	
Crossover Ratio	0.5	
Population Size	128	
Generation	1000	
Selection Algorithm	Rank Selection	
Selection Size	64	

Target Workload Information

- Generated 6 target workloads
 - > 16 workloads with size of 1 GB each.
 - > Different value sizes, # of entries, read-write ratio, update.
 - > Key size : **16 B**
- Generate **20** data pair for target workloads.

Table 6. Target workloads.

Workload Index	Value Size (B), # of Entry	Read : Write	Update
16	16 8192, 130816		-
17	8192, 130816	3:7	-
18 8192, 130816		-	True
19 32768, 32752		7:3	-
20	32768, 32752	3:7	-
21	32768, 32752	-	True

External Metrics

- External Metrics: TIME, RATE, WAF, SA
 - > TIME (s): Total execution time
 - *Time internal from the start of the data recording to the end.*
 - > RATE (MB/s): Data processing rate
 - The number of operations processed by RocksDB per second.
 - > WAF : WA factor
 - Ratio of *physical data size* and *logical data size* written to the storage.
 - $WAF = \frac{Physical \ data \ size}{Logical \ data \ size}$
 - SA (MB): **Space amplification**
 - The size of the data recorded in the actual LSM-Tree.

Results

• Apply **geometric mean** to the EM.

• Score =
$$\sqrt[4]{\frac{TIME_D}{TIME_A} \times \frac{RATE_A}{RATE_D} \times \frac{WAF_D}{WAF_A} \times \frac{SA_D}{SA_A}}$$

Performance of default setting is described as a **red line pointing to 1**.

Overall Comparison

- Overall comparison among *default settings*, *Facebook* recommended configuration, database administrator (*DBA*), and *RTune*.
- Best performance among the **5 target workloads**.
- Slightly lower than DBA in the **17th** workload.

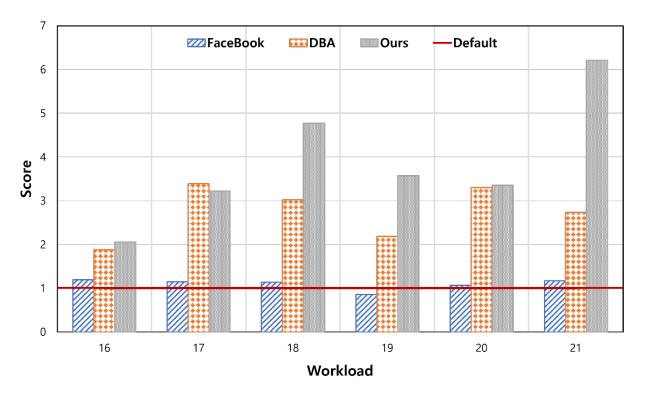


Figure 6. Overall performance comparison

Combined Workload & Pruning Internal Metrics

- "Not Combined" : Use the closest workload as the CW.
- "IM Clustering" : Use pruned IM by k-means clustering.
- Best performance in **all target workloads**.
- Better to describe a workload using **CW** and **full IM**.

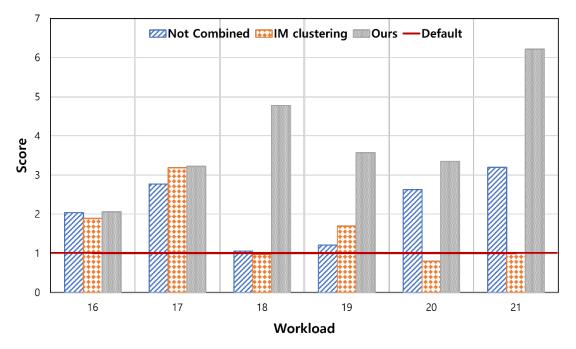


Figure 7. Workload combining and internal metrics pruning comparison

Number of Knobs

- Difference in the **number of knobs**.
- Pruning knobs with **3, 5, and 7 knobs** with a random forest.
- Best performance in **all target workloads**.
- Top 7 model achieved good performance in workload 16, 17, and 19, but it is not stable.

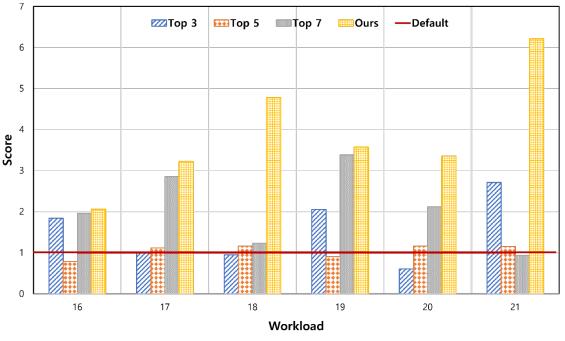


Figure 8. Comparison of number of knobs

Weight Comparison

- Comparison of using **4 different weight pairs** to the score function.
- Best performance in **all target workloads**.
- The rest of 4 models hard to reach the default setting.

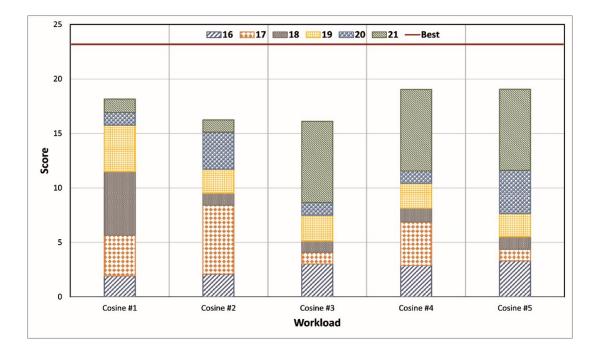
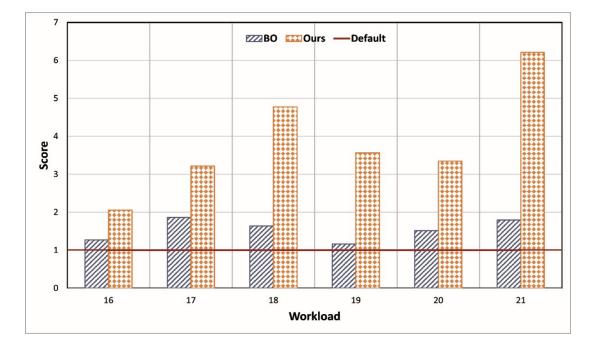
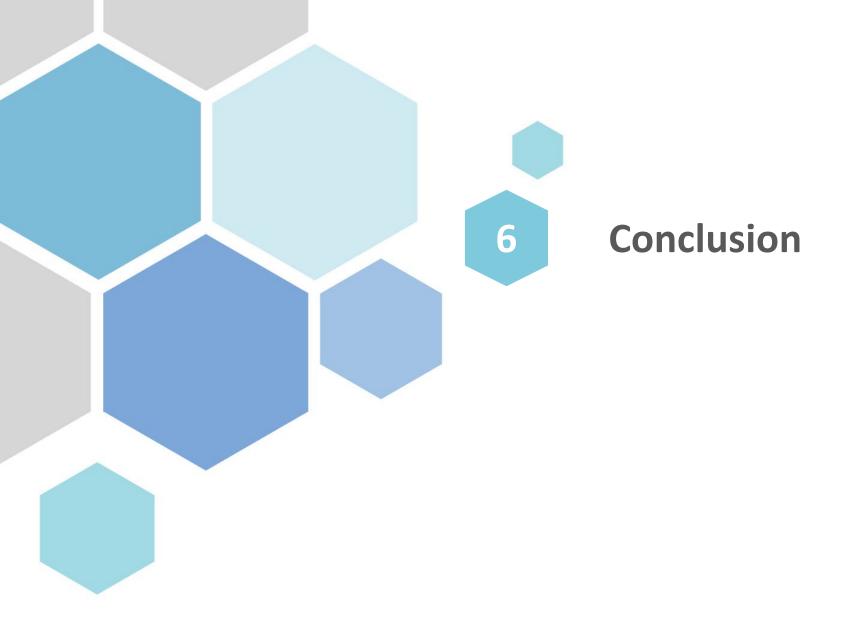


Figure 9. Different weight comparison

Cosine similarity & Mahalanobis distance



- Comparison of cosine similarity and Mahalanobis distance.
- The sum of the performance was good but not the best.
- Performance is not stable especially in the case of Cosine #3.



Bayesian optimization comparison UNIVERSITY

- Comparison of Bayesian optimization with GA.
- BO cannot overperform our model.
- The score barely exceeds the default line in workload 19.

Conclusion and Future Works

Conclusion

- Generated RocksDB data repository.
- > Applied **MD** and **new workload representation** to create **CW**.
- > Novel score function to train DNN model with 4 EM simultaneously.
- > Use **GA** with **DNN** model to find the **optimal solutions**.
- Proved the optimal solutions yields the **best performance** through comparative experiments.

THANK YOU

Contact: jinhuijun@yonsei.ac.kr