

INTRODUCTION

First, tuning a smaller configuration space can lead to significant improvements in the number of samples
required.

Yet, which knobs are important varies by workload, and existing methods for identifying important knobs are
expensive and unreliable.

Second, we observe that not all DBMS knob values are the same.

Additionally, some parameters may have very large valid ranges.

2

CONTRIBUTION

First, we design a randomized low-dimensional projection approach where we perform a projection of the
configuration space from all dimensions (𝐷𝐷) to a lower-dimensional subspace (𝑑𝑑) and then use a BO-method to
tune this lower-dimensional subspace.

Second, to handle configuration knobs that have a different behavior for special values, we design a new
biased-sampling based approach that can be used during the random initialization of BO methods.

We combine the above techniques to design LlamaTune, an end-to-end tuning framework that can tune a DBMS
for new workloads without using any prior knowledge.

3

MOTIVATION

1. Only Tuning Important Knobs

The main reason optimizers need a large number of iterations is that the configuration search space exposed to
them is very high-dimensional.

All existing methods for automatically identifying important knobs are based on a ranking oriented process.

Limitation

(1) not always reliable, which can lead to finding worse configurations

(2) the important knobs found for one workload may not work for others.

(3) challenging to identify and select the correct set of important knobs for different workloads or systems.

4

MOTIVATION

2. Identifying Important Knobs

tuning a low-dimensional space, generated by a set of important knobs can lead to finding better configurations
with fewer iterations compared to the state-of-the-art SMAC algorithm.

However, existing statistical-based methods for selecting important knobs cannot be utilized as they are
expensive, not always reliable and can lead to worse tuning outcomes.

5

Randomized Low Dimensional Tuning

Present a new approach which bypasses the need to identify the exact set of important knobs, yet realizes the
benefits of low dimensional tuning.

Due to the high dimensionality D of the input search space 𝑋𝑋𝐷𝐷 , modeling the DBMS performance across the
whole space accurately enough requires the evaluation of many points.

The BO method received as an input, a smaller d-dimensional space 𝑋𝑋𝑑𝑑 .
The fewer points would be needed to effectively learn the (smaller) space 𝑋𝑋𝑑𝑑 .

Therefore, choosing a smaller 𝑋𝑋𝑑𝑑 instead of 𝑋𝑋𝐷𝐷 has the potential to improve the BO method performance.

6

Synthetic Search Spaces

We can use "artificial” dimensions (or synthetic knobs) to generate our low dimensional space, 𝑋𝑋𝑑𝑑 .

⇒Mapping from the synthetic knob values (i.e. approximated space 𝑋𝑋𝑑𝑑)

to the physical DBMS configuration knobs (i.e. original input space 𝑋𝑋𝐷𝐷).

This enables us to realize the benefits of optimizing a low-dimensional space, while avoiding the need to
identify important knobs.

We believe that low-dimensional BO-methods are a promising way to improve the optimizer performance for
database tuning.

7

Random Low-dimensional Projections
REMBO

8

Random Low-dimensional Projections
REMBO

If the original space 𝑋𝑋𝐷𝐷 is unbounded, then the projected point will be a valid point in 𝑋𝑋𝐷𝐷 .

Yet, in many problems (including DBMS tuning), there exist constraints associated with 𝑋𝑋𝐷𝐷 .

REMBO handles this by "clipping" the projected �̂�𝑝 to the nearest point that belongs in 𝑿𝑿𝑫𝑫.

This heuristic forces the optimization to be done on the facets of 𝑋𝑋𝐷𝐷 , thus neglecting almost all interior points9

Random Low-dimensional Projections
HeSBO

The index of the column and the sign of the value are sampled independently and uniformly at random.

Essentially, A provides a one-to-many mapping.

Every original knob i in 𝑋𝑋𝐷𝐷 is controlled by exactly one synthetic knob j in 𝑋𝑋𝑑𝑑 , while each synthetic knob can
control multiple original ones.

Thus, it is impossible for any projection to fall outside of 𝑋𝑋𝐷𝐷 .
10

BO with Random Projections

d : the number of dimensions of the low dimensional space.
𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 : the number of initial random samples to be generated.
𝑁𝑁𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 : the number of iterations to perform.

11

Converting Points to DBMS Knob Values

Both REMBO and HeSBO project the point suggested by the BO method to the uniform high-dimensional space
𝑋𝑋𝐷𝐷 = [−1, 1]𝐷𝐷.
However, in reality a DBMS configuration knob space is much more heterogeneous compared to 𝑿𝑿𝑫𝑫 .

1. Numerical
The [min, max] range of values can significantly vary across different knobs
⇒ employ min-max uniform scaling.

translate a value 𝑥𝑥 ∈ 𝑥𝑥𝑚𝑚𝑖𝑖𝑛𝑛, 𝑥𝑥𝑚𝑚𝑎𝑎𝑥𝑥 to a y ∈ [𝑦𝑦𝑚𝑚𝑖𝑖𝑛𝑛 , 𝑦𝑦𝑚𝑚𝑎𝑎𝑥𝑥]

12

Converting Points to DBMS Knob Values

Both REMBO and HeSBO project the point suggested by the BO method to the uniform high-dimensional space
𝑋𝑋𝐷𝐷 = [−1, 1]𝐷𝐷.
However, in reality a DBMS configuration knob space is much more heterogeneous compared to 𝑿𝑿𝑫𝑫 .

2. Categorical

we perform a two-step conversion process.
We first rescale the projected value x ∈ [−1, 1] to a value y ∈ [0, 1], and then we split this range equally to as
many bins, as is the number of different choices.

The final categorical knob value is defined by which bin the value y falls into.

13

Dimensionality of the Projected Space

Prior works have shown good performance improvements when tuning around the 10−20% most important, of all
knobs considered for tuning.

we show next, setting d to an even higher value (i.e. > 16) is not detrimental to the optimizer performance, which
also demonstrates the robustness of our proposed method.

First, we want to evaluate how effective REMBO and HeSBO methods are at finding a good projection of the
original DBMS configuration space, which can result in better performance.

Second, we want to explore how much our selection of d influences the optimizer performance.

14

Dimensionality of the Projected Space

Case study
using YCSB-A.
Tuning 90 knobs of PostgreSQL v9.6 for 100 iterations. (first 10 are LHS-generated samples.)
experiment with both REMBO and HeSBO, where we set d to 8, 16, or 24 dimensions.

15

Special Knob Values in Databases

The configuration search space
- Categorical knobs

- Numerical knobs

- hybrid knobs
: numerical knobs do have special values (e.g. −1, 0) that inevitably break natural order.

If such a knob is set to its special value, it does something very different compared to what it normally does.
(e.g., disables some feature).

We identified 20 hybrid knobs for PostgreSQL v9.6 from the official documentation; special values are explicitly mentioned in
the knob description.

16

Special Knob Values in Databases

1. Disabling some feature
2. Inferring this knob’s value based on some other’s knob
3. Setting this knob’s value using an internal heuristic.

Special values make the modeling of the DBMS performance more difficult because they represent a discontinuity in
objective
Function output relative to its input.

17

Special Knob Values in Databases

A value of "0" (red diamond in the figure 4), resulting in far higher throughput for this workload.

However, if the optimizer tuning this knob lacked the knowledge about the special meaning of value 0,
it would be unlikely that it would ever choose this value during tuning.

The optimizer would focus on exploring the "neighborhood" of larger values for this knob, which
seem more promising. 18

Special Knob Values in Databases

- Biasing Special Value Sampling Probability

We propose a methodology that enables the optimizer to observe the effect of a special value early on in the
tuning process.

Change the hybrid knobs values proposed, such that we bias the probability of the special value being evaluated.
we keep the same probability p for all hybrid knobs we tune.

Finally, the resulting value is used at the DBMS configuration to be evaluated. 19

Configuration Space Bucketization

How discrete configuration knobs in DBMS’ can affect the exploitation (or local search) phase.

A broader range of values gives more fine-grained control of the underlying mechanism.
Our observation is that for many configuration knobs with large values ranges, small changes are unlikely to
affect the DBMS performance significantly.

we explore bucketizing the knob value space.
We can do this by limiting the number of unique values that any configuration knob can take to K.

20

Configuration Space Bucketization

Case Study.
We choose P% = 50% (i.e. half of all knobs), which leads to K = 10, 000 for our set of 90 knobs in PostgreSQL
v9.6.

For YCSB-A, while the performance in the first 20 iterations are similar, in later iterations the bucketized
(smaller) space reaches a better performing configuration faster.

For YCSB-B we see larger benefits starting at iteration 10.

Thus, we see that the benefits from bucketization varies across workloads. 21

LlamaTune Design

DBMS specific observations that can improve the configuration optimizer.

1. random low-dimensional projections

2. biasing the special value of hybrid knobs

3. bucketization for knobs with many unique values.

A unified design should satisfy three main requirements.

First, the optimizer should always operate on the low-dimensional space, and not in the original DBMS knob
configuration one.

Second, the special value biasing should be performed only over the set of hybrid knobs.

Finally, the bucketized value space for the set of knobs should be exposed to the optimizer, so it is aware of the
larger sampling intervals; otherwise it will still continue to sample at finer granularities.

22

LlamaTune Design

23

1. We tune 5 DBMS knobs using a 2-dimensional random projection derived by HeSBO.
Q denotes the size of the fixed interval (2/K, K=10,000).

LlamaTune Design

24

1. We tune 5 DBMS knobs using a 2-dimensional random projection derived by HeSBO.
Q denotes the size of the fixed interval (2/K, K=10,000).

2. The optimizer suggests a point [-0.8, 0.4] that belongs to the low-dim [−1, 1]d bucketized space.

LlamaTune Design

25

3. This point is then projected to a high-dimensional point in [−1, 1]D (i.e., D = 5).
The first synthetic knob is mapped to both hybrid knobs (but with opposite ± signs), while the second one

maps to the remaining three.

LlamaTune Design

26

3. This point is then projected to a high-dimensional point in [−1, 1]D (i.e., D = 5).
The first synthetic knob is mapped to both hybrid knobs (but with opposite ± signs), while the second one

maps to the remaining three.

4. Next, we normalize all knob values to [0, 1], and apply special value biasing only for the two hybrid knob values.

LlamaTune Design

27

3. This point is then projected to a high-dimensional point in [−1, 1]D (i.e., D = 5).
The first synthetic knob is mapped to both hybrid knobs (but with opposite ± signs), while the second one

maps to the
remaining three.

4. Next, we normalize all knob values to [0, 1], and apply special value biasing only for the two hybrid knob values.

5. Finally, all normalized values are converted to the corresponding physical knob values.

Experiment Setup

28

Hardware : CloudLab

Tuning Settings : PostgreSQL v9.6 as our target DBMS
select a set of tunable 90 knobs that could affect DBMS performance.
repeat each experiment five times using different random seeds as input to our

optimizer.
first 10 iterations are generated randomly using LHS.

Workload : six workloads

Optimizers : we use two state-of-the-art BO-based optimizers: SMAC, and GP-BO.
Evaluation Metrics : final DBMS throughput (latency) improvement and time-to-optimal throughput (latency).

Efficiency Evaluation

29

Optimizing for Throughput

First, LlamaTune reaches the performance of the baseline SMAC optimum configuration by ~ 5.62X faster on
average.

For four of the total six workloads, it reaches that performance before iteration 20, which highlights its
increased sample efficiency.

Second, LlamaTune can improve the average final throughput (after 100 iterations) on all workloads, by ~7.13%
on average, compared to vanilla SMAC

Third, even when we account for the variance from different runs (i.e. [5%, 95%] confidence interval), LlamaTune
outperforms the baseline average performance on all experiments.

Efficiency Evaluation

30

Optimizing for Tail Latency

2, 000 requests per second for TPC-C, 8, 000 for SEATS, and 60, 000 for Twitter.

We observe that LlamaTune outperforms the baseline SMAC on all three workloads.

On average LlamaTune yields a ~1.96X time-to-optimal speedup, and ~9.68% better final tail latency.

Ablation Study

31

For YCSB-B we see that only using HeSBO-16 achieves ~2X time-to-optimal speedup, while using the other
techniques this speedup is improved to ~5.5X.
With all our methods applied on top of each other, both the final throughput and the convergence curve clearly
improve.

For YCSB-A, the plain HeSBO-16 projection performs the best, while it seems that the special value biasing
hinders LlamaTune’s convergence.
This is because special knobs values do not improve the YCSB-A performance.

For TPC-C, we observe that HeSBO-16 and special value biasing do have a positive effect on optimization
performance.
Yet, we note a small performance degradation when applying the search space bucketization.

Ablation Study

32

The result of LlamaTune’s tuning pipeline primary limitation, which imposes a bucketized space for all knobs, not
just for the ones with a large number of unique values.

Finally, we note that even though the integration of special value biasing and space bucketization does not always
help.

Deployment Scenario

33

Our goal here is to study how the gains in terms of convergence speed (i.e. time-to-optimal) can be realized in
this setting.
(minimum best performance improvement , the maximum number of K iterations to wait for this improvement to be made).

For ResourceStresser, the policy terminates very early (12th iteration), which results in slight decrease in final
throughput.
We can alleviate this behavior by choosing a more conservative policy.

Optimizer Overhead

34

We measure the time taken by the optimizer to suggest the next configuration across the entire tuning session
(i.e., 100 iterations).
+)This time includes updating the underlying surrogate models

The reduced number of dimensions, resulting from the low-dimensional projection is the primary reason, as the
optimizers have to model a much smaller space.

This is especially important for the GP-BO optimizer, due to the non-linear sampling behavior of GPs.

	슬라이드 번호 1
	INTRODUCTION
	CONTRIBUTION
	MOTIVATION
	MOTIVATION
	Randomized Low Dimensional Tuning
	Synthetic Search Spaces
	Random Low-dimensional Projections
	Random Low-dimensional Projections
	Random Low-dimensional Projections
	BO with Random Projections
	Converting Points to DBMS Knob Values
	Converting Points to DBMS Knob Values
	Dimensionality of the Projected Space
	Dimensionality of the Projected Space
	Special Knob Values in Databases
	Special Knob Values in Databases
	Special Knob Values in Databases
	Special Knob Values in Databases
	Configuration Space Bucketization
	Configuration Space Bucketization
	LlamaTune Design
	LlamaTune Design
	LlamaTune Design
	LlamaTune Design
	LlamaTune Design
	LlamaTune Design
	Experiment Setup
	Efficiency Evaluation
	Efficiency Evaluation
	Ablation Study
	Ablation Study
	Deployment Scenario
	Optimizer Overhead

