

Introduction
It is challenging to tune the configuration parameters of a Spark SQL application for optimal performance because
of two reasons.

First, Spark and Spark SQL both have a number (e.g.,> 20) of configuration parameters.

Second, the configuration parameters may intertwine with each other in a complex way with respect to
performance.

Recent studies propose to leverage machine learning (ML) to tune the configurations for Spark programs and
database Systems.

However, current ML-based approaches have two drawbacks.

First, these approaches take a long time to collect training samples, which is inconvenient in practice.

Second, most ML-based approaches can not adapt to the changes of input data sizes of a Spark SQL application.
2

LOCAT

we propose LOCAT to automatically tune the configurations of a Spark SQL application online.

First : different queries in a Spark SQL application respond to configuration parameter tuning with significantly
different sensitivity.

Second : we propose a Datasize-Aware Gaussian Process (DAGP) to take the input data size in addition to the
configuration parameters of a Spark SQL application into consideration as tuning the configuration parameters.

Third : we propose to identify the important configuration parameters of a Spark SQL application and in turn
only tune them in BO (Bayesian Optimization) iterations.

3

SPARK SQL FRAMEWORK

4

LOCAT APPROACH

5

Query Configuration Sensitivity Analysis

Since a Spark SQL application consists of a number of queries, the execution time of the application would be
shortened if some queries can be removed from it.

However, we do not know which queries of an application can be removed as collecting training samples for it.

we propose query configuration sensitivity analysis (QCSA) to identify which queries can be removed.
6

1. Coefficient of Variation (CV)

Query Configuration Sensitivity Analysis

Since a Spark SQL application consists of a number of queries, the execution time of the application would be
shortened if some queries can be removed from it.

However, we do not know which queries of an application can be removed as collecting training samples for it.

we propose query configuration sensitivity analysis (QCSA) to identify which queries can be removed.
7

2. Classifying CV into high, medium and low.

Query Configuration Sensitivity Analysis

Since a Spark SQL application consists of a number of queries, the execution time of the application would be
shortened if some queries can be removed from it.

However, we do not know which queries of an application can be removed as collecting training samples for it.

we propose query configuration sensitivity analysis (QCSA) to identify which queries can be removed. 8

2. Classifying CV into high, medium and low.

3. Classify a query.

Identifying Important Parameters

The sample collection stage.

It collects the execution times of a small number of executions of a 𝐴𝐴𝑝𝑝𝑝𝑝𝐴𝐴 with a certain input data size, each
execution with a random configuration.

𝑆𝑆′ = {𝑡𝑡𝑖𝑖 , 𝑐𝑐𝑜𝑜𝑛𝑛𝑓𝑓𝑖𝑖 , 𝑑𝑑𝑠𝑠}, 𝑖𝑖 = 1, 2, ..., NIICP

Smaller NIICP is better because we want to reduce the optimization time.
9

Identifying Important Parameters

The IICP stage.

we employ a novel hybrid approach which combines the feature selection and feature extraction.

two steps : configuration parameter selection (CPS)
configuration parameter extraction (CPE) 10

Identifying Important Parameters

The IICP stage. - configuration parameter selection (CPS)

CPS removes the unimportant parameters from the vector 𝑐𝑐𝑜𝑜𝑛𝑛𝑓𝑓 defined by equation and the remaining ones
form a new vector shown in equation.

CPS is implemented by using Spearman Correlation Coefficient (SCC).
=> the values of configuration parameters tuned in this study are discrete numerical variables.

11

Identifying Important Parameters

The IICP stage. - configuration parameter extraction (CPE)

CPE further extracts important parameters from vector 𝑟𝑟_𝑐𝑐𝑜𝑜𝑛𝑛𝑓𝑓 .

small number of new parameters are used to construct the DAGP of BO in this study.

Our CPE is performed by Kernel Principal Component Analysis (KPCA) which is a powerful nonlinear feature
extractor.

Gaussian Kernel are more important than other kernels.
12

Datasize-Aware Gaussian Process

Acquisition Function : Use the Expected Improvement (EI) with Markov Chain Monte Carlo (MCMC)
hyperparameter marginalization algorithm.

Start points : LOCAT incrementally builds the GP model, starting with three samples generated by Latin
Hypercube Sampling (LHS) .

Stop condition : The GP modeling stops after at least 10 iterations. The goal of setting stop condition is to
balance between the exploration of configuration space and the exploitation around the optimal configuration
found.

Summary :

BO starts with the training samples selected by LHS and employs the samples to initialize DAGP.
BO then continuously takes more samples recommended by the DAGP with EI-MCMC until the stop condition is met.
QCSA and IICP are designed to accelerate the optimization process of BO.

13

Experimental Setup

• Two significantly different clusters: an ARM cluster and an x86 cluster.
• Use Spark 2.4.5
• To evaluate LOCAT adapts to the changes of input data size, employ five different data sizes.

14

15

Results AND Analysis

- Determining 𝑵𝑵𝑸𝑸𝑸𝑸𝑸𝑸𝑨𝑨

𝑁𝑁𝑄𝑄𝑄𝑄𝑄𝑄A should be as small as possible while it should also be large enough to accurately reflect the CV of the Spark
SQL queries.

𝑁𝑁𝑄𝑄𝑄𝑄𝑄𝑄A increases from 10 to 30, the CV for TPC-DS as well as that for TPC-H keep increasing.
However, 𝑵𝑵𝑸𝑸𝑸𝑸𝑸𝑸𝑨𝑨 is larger than 30, the CVs are do not increase any longer.

Indicates that 30 samples are enough for QCSA and more samples do not provide any information for CV besides
wasting time. 16

- QCSA Results and Analysis

1. The CVs for different queries are significantly different.

2. Long queries are not necessarily sensitive to configuration tuning.
The CV of Q04 is relatively small(0.24) and its execution time is relatively long (e.g.,80 seconds) while the CV of

query Q14b is
relatively large (2.8) and its execution time is also relatively long (e.g.,49 seconds).

Remaining 23 Queries
{Q72, Q29, Q14b, Q43, Q41, Q99, Q57, Q33, Q14a, Q69, Q40, Q64a, Q50, Q21, Q70, Q95, Q54, Q23a, Q23b, Q15,
Q58, Q62, Q20}. 17

Results AND Analysis

- Determining 𝑵𝑵𝑰𝑰𝑰𝑰𝑸𝑸𝑰𝑰

To perform IICP, we need NIICP of experimental samples to observe how the performance of a Spark SQL
application changes according to the value changes of each configuration parameter.

we set NIICP to 5 and we therefore run a Spark SQL application five times, each time with a random configuration.
-> execution time stored in matrix S’ -> leverage CPS and CPE.

18

Results AND Analysis

- Determining 𝑵𝑵𝑰𝑰𝑰𝑰𝑸𝑸𝑰𝑰

CPS selects about 2/3 of the original 38 configuration parameters.

CPE further extracts about 1/3 of the important configuration parameters selected by CPS.

=> time used to search for the optimal configuration is accordingly dramatically decreased.
19

Results AND Analysis

- Important Parameter Examples

we show the five most important parameters for TPC-DS with three input data sizes.

1. the most important parameters for the three significantly different input data sizes are all
spark.sql.shuffle.partitions.

2. The three parameters related to the number of executor (instances, memory size, and compress) always in
the top five important ones for the three input data size.

3. The parameter Spark.memory.offHeap.size comes to the fifth most important parameter when the data size
increases to 1TB. 20

Results AND Analysis

- Optimization Time

The optimization time reduction achieved by LOCAT on the ARM cluster.
Note that the input data sizes for the benchmarks are all 300GB.

Others optimization time / Locat optimization time

1. LOCAT can indeed significantly reduce the time used by ML approaches to optimize the performance of a
wide range of Spark SQL applications.

2. Locat can adapt to significantly different hardware as well as different scale of clusters.
21

Results AND Analysis

- Speed Up

In this section, we compare the speedups of the program-input pairs tuned by LOCAT over they tuned by Tuneful,
DAC, GBO-RL, and QTune.

22

Results AND Analysis

1. LOCAT can tune Spark SQL applications with not only higher performance improvements but also in
significantly shorter time compared to the SOTA approaches.

2. Different hardware and different scales of clusters, LOCAT can still outperform the SOTA approaches in both
performance

improvement and optimization time reduction.

3. LOCAT outperforms the SOTA approaches for all different input data sizes of a Spark SQL application. 23

Results AND Analysis

- Speed Up

We compare the performance of TPC-DS with input data sizes of 100GB, 200GB, 300GB, 400GB, and 500GB tuned
by LOCAT with all the 38 configuration parameters (AP) and with the 15 important parameters (IP) produced
by IICP.

=> tuning the important configuration parameters results in higher performance than tuning all the configuration
parameters for Spark SQL applications.

24

Results AND Analysis

- WHY IICP?

We use several ML algorithms to construct performance models and use the mean squared error (MSE) to
measure the model accuracy.

=> The average error of the GBRT models is the lowest among all models.
25

Results AND Analysis

- WHY IICP?

Higher SD of execution times indicates that configuration parameters identified by the approach are more
important than one another.

This indicates that IICP outperforms GBRT for identifying important parameters.

The reason is that GBRT requires a large number of experiment samples to build an accurate model. 26

Results AND Analysis

- Where does the Speedup Come from?

First, LOCAT, Tuneful, DAC, GBO-RL, and Qtune all reduce the execution time significantly and the performance is
higher with larger input data size.

Second, the performance improvement mainly comes from reducing the execution time of CSQ.

Third, LOCAT outperforms other four methods in reducing more executing time of CSQ. 27

Results AND Analysis

- Where does the Speedup Come from?

Garbage Collection(GC) time comparison for TPC-DS with multiple queries and Join with one query, respectively.

The JVM GC time used by LOCAT is significantly shorter than other approaches.

In addition, the GC time used by LOCAT increases significantly slowly than other approaches with the increasing
of input data size.

28

Results AND Analysis

- Tuning Overhead of Increasing Data Size
When LOCAT and the SOTA approaches are applied to TPC-DS with increasing input data size.

LOCAT incurs significantly lower optimization overhead for all different sizes of input data.

The reason is that LOCAT adapts to the input data size changes to avoid re-tuning.

29

	슬라이드 번호 1
	Introduction
	LOCAT
	SPARK SQL FRAMEWORK
	LOCAT APPROACH
	Query Configuration Sensitivity Analysis
	Query Configuration Sensitivity Analysis
	Query Configuration Sensitivity Analysis
	Identifying Important Parameters
	Identifying Important Parameters
	Identifying Important Parameters
	Identifying Important Parameters
	Datasize-Aware Gaussian Process
	Experimental Setup
	슬라이드 번호 15
	Results AND Analysis
	슬라이드 번호 17
	Results AND Analysis
	Results AND Analysis
	Results AND Analysis
	Results AND Analysis
	Results AND Analysis
	Results AND Analysis
	Results AND Analysis
	Results AND Analysis
	Results AND Analysis
	Results AND Analysis
	Results AND Analysis
	Results AND Analysis

