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Introduction

It is challenging to tune the configuration parameters of a Spark SQL application for optimal performance because
of two reasons.

First, Spark and Spark SQL both have a number (e.g.,> 20) of configuration parameters.

Second, the configuration parameters may intertwine with each other in a complex way with respect to
performance.

Recent studies propose to leverage machine learning (ML) to tune the configurations for Spark programs and
database Systems.

However, current ML-based approaches have two drawbacks.
First, these approaches take a long time to collect training samples, which is inconvenient in practice.
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Second, most ML-based approaches can not adapt to the changes of input data sizes of a Spark SQL application.



LOCAT

we propose LOCAT to automatically tune the configurations of a Spark SQL application online.

First : different queries in a Spark SQL application respond to configuration parameter tuning with significantly
different sensitivity.

Second : we propose a Datasize-Aware Gaussian Process (DAGP) to take the input data size in addition to the
configuration parameters of a Spark SQL application into consideration as tuning the configuration parameters.

Third : we propose to identify the important configuration parameters of a Spark SQL application and in turn
only tune them in BO (Bayesian Optimization) iterations.



SPARK SQL FRAMEWORK
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Figure 1: An Overview of the Spark SOQL framework.



LOCAT APPROACH
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Figure 3: An Overview of LOCAT. BO — Bayesian Opti-
mization. QCSA — Query Configuration Sensitivity Analy-
sis. [ICP — Identifying Important Configuration Parameters.
DAGP — Data size Aware Gaussian Process. EI-MCMC — Ex-

pected Improvement with Markov Chain Monte Carlo.



Query Configuration Sensitivity Analysis

1. Coefficient of Variation (CV)
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Since a Spark SQL application consists of a number of queries, the execution time of the application would be
shortened if some queries can be removed from it.

However, we do not know which queries of an application can be removed as collecting training samples for it.

we propose query configuration sensitivity analysis (QCSA) to identify which queries can be removed.



Query Configuration Sensitivity Analysis

2. Classifying CV into high, medium and low.

Widthey = (max(CVql.) - min(Cti))/3
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Since a Spark SQL application consists of a number of queries, the execution time of the application would be
shortened if some queries can be removed from it.

However, we do not know which queries of an application can be removed as collecting training samples for it.

we propose query configuration sensitivity analysis (QCSA) to identify which queries can be removed. ,



Query Configuration Sensitivity Analysis

2. Classifying CV into high, medium and low.
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3. Classify a query.

Since a Spark SQL application consists of a number of queries, the execution time of the application would be
shortened if some queries can be removed from it.

However, we do not know which queries of an application can be removed as collecting training samples for it.

we propose query configuration sensitivity analysis (QCSA) to identify which queries can be removed. ’



ldentifying Important Parameters
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Figure 5: The block diagram of IICP. CPS — Configuration
Parameter Selection. SCC — Spearman Correlation Coeffi-
cient. CPE — Configuration Parameter Extraction. KPCA —
Kernel Principle Component Analysis.

The sample collection stage.

It collects the execution times of a small number of executions of a AppA with a certain input data size, each
execution with a random configuration.

§' ={ti, confi,ds}i=1,2 .., Nycp

Smaller Nycp Is better because we want to reduce the optimization time.



ldentifying Important Parameters
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Figure 5: The block diagram of IICP. CPS — Configuration
Parameter Selection. SCC — Spearman Correlation Coeffi-
cient. CPE — Configuration Parameter Extraction. KPCA —
Kernel Principle Component Analysis.

The /ICP stage.

we employ a novel hybrid approach which combines the feature selection and feature extraction.

two steps : configuration parameter selection (CPS)
configuration parameter extraction (CPE)
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ldentifying Important Parameters

conf ={c1,¢2,....Cp, ... Ck } r_conf = {c1,€2, .c0 Ciy eeus Crk }

The IICP stage. - configuration parameter selection (CPS)

CPS removes the unimportant parameters from the vector conf defined by equation and the remaining ones
form a new vector shown in equation.

CPS is implemented by using Spearman Correlation Coefficient (SCC).
=> the values of configuration parameters tuned in this study are discrete numerical variables.



ldentifying Important Parameters
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Figure 6: Kernel comparison. §.D — standard deviation.

The IICP stage. - configuration parameter extraction (CPE)
CPE further extracts important parameters from vector r_conf .
small number of new parameters are used to construct the DAGP of BO in this study.

Our CPE is performed by Kernel Principal Component Analysis (KPCA) which is a powerful nonlinear feature
extractor.

. . 12
Gaussian Kernel are more important than other kernels.



Datasize-Aware Gaussian Process

Acquisition Function : Use the Expected Improvement (El) with Markov Chain Monte Carlo (MCMC)
hyperparameter marginalization algorithm.

Start points : LOCAT incrementally builds the GP model, starting with three samples generated by Latin
Hypercube Sampling (LHS) .

Stop condition : The GP modeling stops after at least 10 iterations. The goal of setting stop condition is to
balance between the exploration of configuration space and the exploitation around the optimal configuration
found.

Summary :

BO starts with the training samples selected by LHS and employs the samples to initialize DAGP.
BO then continuously takes more samples recommended by the DAGP with EI-MCMC until the stop condition is met.
QCSA and IICP are designed to accelerate the optimization process of BO.



Experimental Setup

Table 1: Experimented Benchmarks and Input Data Sizes.

Benchmark Input Data Size
TPC-DS
TPC-H
HiBench Join 100, 200, 300, 400, 500 (GB)
HiBench Scan
HiBench Aggregation

« Two significantly different clusters: an ARM cluster and an x86 cluster.
« Use Spark 2.4.5
« To evaluate LOCAT adapts to the changes of input data size, employ five different data sizes.



Table 2: Description of Selected Parameters.

Configuration Parameters-Description Default | Range A Range B
spark.broadcast.blockSize - Specifies the size of each piece of a block for TorrentBroadeastFactory, in MB. 4 1-16 1-16
spark.default. parallelism — Specifies the maximum number of partitions in a parent RDD for shuffle operations. # 100 - 1000 [ 100 - 1000
*sparl.driver.cores — Specifies the number of cores to use for the driver process. 1 1-8 1-16
*spark.driver.memory — Specifies the amount of memory to use for the driver process, in GE. 1 4-32 4-48
*spark.executor.cores — Specifies how many CPU cores each executor process uses, 1 1-8 1-16
sparl.executor.instances - Specifies the total number of Executor processes used for the Spark job. 2 45 - 384 9-112
*spark executor.memory — Specifies how much memory each executor process uses, in GB. 1 4-32 4-48
*spark.executor.memoryOverhead — Specifies the additional memory size to be allocated per executor, in MB. 384 0 - 32765 0- 49152
spark.do.compression.zstd.bufferSize - Specifies the buffer size used in Zstd compression, in KB, 32 16 - 96 16 -94
spark.io.compression.zstd.level - Specifies the compression level for Zstd compression codec. 1 1-5 1-5
sparlk.kryoserializer.buffer - Specifies the initial size of Kryo's serialization buffer, in KB. 64 32-128 32-123
sparlc.lryoserializer.buffer.max- Specifies the maximum allowable size of Kryo serialization buffer, in MEB. 64 32 -128 32 - 128
spark.locality.wait- Specifies the wait time to launch a task in a data-local before in a less-local node, in second. 3 1-6 1-6
spark.memory.fraction — Specifies the fraction of (heap space - 300MB) used for execution and storage. 0.6 05 -09 05 -0.9
spark.memory.storageFraction - Specifies the amount of storage memory immune to eviction. 0.5 05-09 0.5-0.9
*spark memory.offHeap.size — Specifies the memory size which can be used for off-heap allocation, in ME. 0 0- 32768 0- 49152
spark.reducer.maxSizelnFlight - Specifies the maximum size to fetch simultane ously from a reduce task, in MB. 43 24 -144 24-144
sparl.schedulerrevive.interval - Specifies the interval for the scheduler to revive the worker resource, in second. 1 1-5 1-5
sparl.shuffle.file buffer - Specifies in-memory buffer size for each shuffle file output stream, in KB. 32 16 - 96 16 -94
spark.shuffle.io.mmConnectionsPerPeer — Specifies the amount of connections between hosts are reused. 1 1-5 1-5
spark.shuffle.sort.by passMergeThreshold - Specifies the partition number to skip mapper side sorts. 200 100 - 400 100 - 400
spark.sql.autoBroadeastJoinThreshold - Specifies the maximum size for a broadcasted table, in KB. 1024 | 1024 - 8192 | 1024 - 8192
spark.sql.cartesianProductExec.buffer.in.memory.threshold - Specifies row numbers of Cartesian cache. 4096 | 1024 - 8192 | 1024 - 8192
spark.sgql.codegen.maxFields - Specifies the maximum field supported before activating the entire stage codegen. | 100 50 - 200 50 - 200
sparl.sglinMemoryColumnarStorage batchSize - Specifies the size of the batch used for column caching. 10000 | 5000 - 20000 | 5000 - 20000
spark.sql.shuffle.partitions — Specifies the default partition number when shuffling data for joins or aggregations. | 200 100 - 1000 | 100 - 1000
spark.storage.memoryMapThreshold - Specifies mapped memory size when read a block from the disk, in MB. 1 1-10 1-10
spark.broadcast.compress — Decides whether to compress broadeast variables before sending them. true | true, false | true, false
spark.memory.offHeap.enabled — Decides whether to use off-heap memory for certain operations. true | true, false | true, false
spark.rdd.compress — Decides whether to compress serialized RDD partitions. true | true, false | true, false
spark.shuffle.compress — Decides whether to compress map output files. true | true, false | true, false
spark.shuffle spillcompress — Decides whether to compress data spilled during shuffles. true | true, false | true, false
spark.sgl.codegen agpregate map.twolevelenable - Decides whether to enable two-level aggregate hash mapping. true | true, false | true, false
spark.sqlinMemoryColumnarStorage.compressed — Decides whether to compress each column based on data. true | true, false | true, false
spark.sqlinMemoryColumnarStorage. partitionPruning — Decides whether to prune partition in memory. true | true, false | true, false
spark.sql.join.preferSortMergefoin — Decides whether to use sort Merge Join instead of Shuffle Hash Join. true | true, false | true, false
spark.sglretainGroupColumns - Decides whether to retain group columns. true | true, false | true, false
spark.sql.sort.enableRadixSort — Decides whether to use radix sort. true | true, false | true, false
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Results AND Analysis
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Figure 7: How CV (Coefficient of Variation) changes along
with the increasing number of experimental samples for
QCSA.The leftand right Y axes represent the CVs of TPC-DS5S
and TPC — H, respectively.

- Determining NQCSA

Ngcsa should be as small as possible while it should also be large enough to accurately reflect the CV of the Spark
SQL queries.

Ngcsa increases from 10 to 30, the CV for TPC-DS as well as that for TPC-H keep increasing.
However, Nocsa is larger than 30, the CVs are do not increase any longer.

Indicates that 30 samples are enough for QCSA and more samples do not provide any information for C\{6besides
wasting time.
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Figure 8: Configuration Sensitivity denoted by CV (coeffi-
cient variation) of the TPC — DS queries. Y axis denotes the
CVs of queries when configurations are changed.

- QCSA Results and Anaiysis
1. The CVs for different queries are significantly different.

2. Long queries are not necessarily sensitive to configuration tuning.
The CV of Q04 is relatively small(0.24) and its execution time is relatively long (e.g.,.80 seconds) while the CV of

query Q14b is
relatively large (2.8) and its execution time is also relatively long (e.g. 49 seconds).

Remaining 23 Queries
{Q72, Q29, Q14b, Q43, Q41, Q99, Q57, Q33, Q14a, Q69, Q40, Q64a, Q50, Q21, Q70, QI95, Q54, Q234 Q23b Q15,

Q58, Q62, Q20}.



Results AND Analysis
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rameters along with the increasing number of samples.

- Determining NIICP

To perform IICP, we need Nycp of experimental samples to observe how the performance of a Spark SQL
application changes according to the value changes of each configuration parameter.

we set Nycp to 5 and we therefore run a Spark SQL application five times, each time with a random configuration.
-> execution time stored in matrix S’ -> leverage CPS and CPE.
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Figure 10: The number of important configuration parame-
ters selected by CPS and CPE.

- Determining Ncp
CPS selects about 2/3 of the original 38 configuration parameters.
CPE further extracts about 1/3 of the important configuration parameters selected by CPS.

=> time used to search for the optimal configuration is accordingly dramatically decreased.



Results AND Analysis

Table 3: Top 5 important configurations selected by CPS with
100GB, 500GB, and 1TB input data size of TPC — DS.

Datasize 100GB 500GB 1TB
sql.shuffle.partitions |sql.shuffle.partitions| sql.shuffle.partitions
Conf | executormemory | shuffle.compress shuffle.compress
(spark.) | executor.cores executor.memory | executor.memory
shuffle.compress | executor.instances | executor.instances
executor.instances executor.cores |memory.offHeap.size

- Important Parameter Examples
we show the five most important parameters for TPC-DS with three input data sizes.

1. the most important parameters for the three significantly different input data sizes are all
spark.sql.shuffle.partitions.

2. The three parameters related to the number of executor (instances, memory size, and compress) always in
the top five important ones for the three input data size.

3. The parameter Spark.memory.offHeap.size comes to the fifth most important parameter when the data size
Increases to 1TB.



Results AND Analysis
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Figure 11: Optimization time comparison between LOCAT
and others on the four-node ARM cluster. Y axis denotes the
time reduction which is defined by using the optimization
time taken by LOCAT to divide those taken by others.

- Optimization Time
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Figure 12: Optimization Time Comparison between LOCAT
and others on the eight-node x86 cluster. Y axis denotes the
time reduction which is defined by using the optimization
time taken by LOCAT to divide those taken by others.

The optimization time reduction achieved by LOCAT on the ARM cluster.
Note that the input data sizes for the benchmarks are all 300GB.

Others optimization time / Locat optimization time

1. LOCAT can indeed significantly reduce the time used by ML approaches to optimize the performance of a

wide range of Spark SQL applications.

2. Locat can adapt to significantly different hardware as well as different scale of clusters.

21



Results AND Analysis
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Figure 13: Speedups of the performance tuned by LOCAT over those tuned by Tuneful, DAC, GBO-RL, and QTune on the four-
node ARM cluster. The unit of the numbers along with the X axis is GB. The Y axis represents the speedup which is defined

by using the execution time of a program-input pair tuned by LOCAT to divide that of it tuned by another approach.

- Speed Up

In this section, we compare the speedups of the program-input pairs tuned by LOCAT over they tuned by Tuneful,
DAC, GBO-RL, and QTune.

-ET}ﬂIﬂ

speedup = W
ocat

22
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Figure 14: Speedups of the performance tuned by LOCAT over those tuned by other approaches on the eight-node x86 cluster.
The unit of the numbers along with the X axis is GB| The Y axis represents the speedup which is defined by using the execution
time of a program-input pair tuned by LOCAT to divide that of it tuned by another approach.

1. LOCAT can tune Spark SQL applications with not only higher performance improvements but also in
significantly shorter time compared to the SOTA approaches.

2. Different hardware and different scales of clusters, LOCAT can still outperform the SOTA approaches in both
performance
Improvement and optimization time reduction.

3. LOCAT outperforms the SOTA approaches for all different input data sizes of a Spark SQL application. **
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Figure 15: The performance of TPC-DS with input data sizes
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- Speed Up

We compare the performance of TPC-DS with input data sizes of 100GB, 200GB, 300GB, 400GB, and 500GB tuned
by LOCAT with all the 38 configuration parameters (AP) and with the 15 important parameters (IP) produced
by IICP.

=> tuning the important configuration parameters results in higher performance than tuning all the configuration
parameters for Spark SQL applications.
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Figure 16: Accuracy of models built by GBRT (Gradient
Boosted Regression Tree), SVR (Support Vector Regression),
LinearR (Linear Regression), LR (Logistic Regression), and

KNNAR (K-Nearest Neighbor Algorithm for Regression).

- WHY IICP?

We use several ML algorithms to construct performance models and use the mean squared error (MSE) to
measure the model accuracy.

=> The average error of the GBRT models is the lowest among all models.
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Figure 17: The comparison between IICP and GBRT. The
Y axis represents the standard deviation of the execution
times of TPC — DS and Join configured by the important pa-
rameters identified by IICP or GBRT.

- WHY IICP?

Higher SD of execution times indicates that configuration parameters identified by the approach are more
important than one another.

This indicates that IICP outperforms GBRT for identifying important parameters.

The reason is that GBRT requires a large number of experiment samples to build an accurate model. 26
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Figure 18: LOCAT Outperforms other Approaches by Signif-
icantly Accelerating the Execution of CSQ.

- Where does the Speedup Come from?

First, LOCAT, Tuneful, DAC, GBO-RL, and Qtune all reduce the execution time significantly and the performance is
higher with larger input data size.

Second, the performance improvement mainly comes from reducing the execution time of CSQ.

Third, LOCAT outperforms other four methods in reducing more executing time of CSQ. 27
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Figure 19: JVM Garbage Collection (GC) Time Comparison.

- Where does the Speedup Come from?
Garbage Collection(GC) time comparison for TPC-DS with multiple queries and Join with one query, respectively.
The JVM GC time used by LOCAT is significantly shorter than other approaches.

In addition, the GC time used by LOCAT increases significantly slowly than other approaches with the increasing
of input data size.
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Figure 20: How Tuning Overhead (in hours) Changes when
the input data size of an application increases.

- Tuning Overhead of Increasing Data Size

When LOCAT and the SOTA approaches are applied to TPC-DS with increasing input data size.

LOCAT incurs significantly lower optimization overhead for all different sizes of input data.

The reason is that LOCAT adapts to the input data size changes to avoid re-tuning.
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