Towards Online and Safe Configuration Tuning with Semi-supervised Anomaly Detection

> 연세대학교 컴퓨터과학과 김정은 2024년 11월



#### 과제명: IoT 환경을 위한 고성능 플래시 메모리 스토리지 기반 인메모리 분산 DBMS 연구개발

과제번호: 2017-0-00477





Database Parameter Tuning

- Database tuning is to enhance the performance of database, there are various tuning techniques available.
- Database Configuration
  - > Knob Tuning : Automating parameter optimization.
  - > Index Advisor: Recommending indexes for efficient query execution.
  - > View Advisor: Suggesting materialized views to improve query performance.
  - > SQL Rewriter: Enhancing query structure by rewriting inefficient SQL.

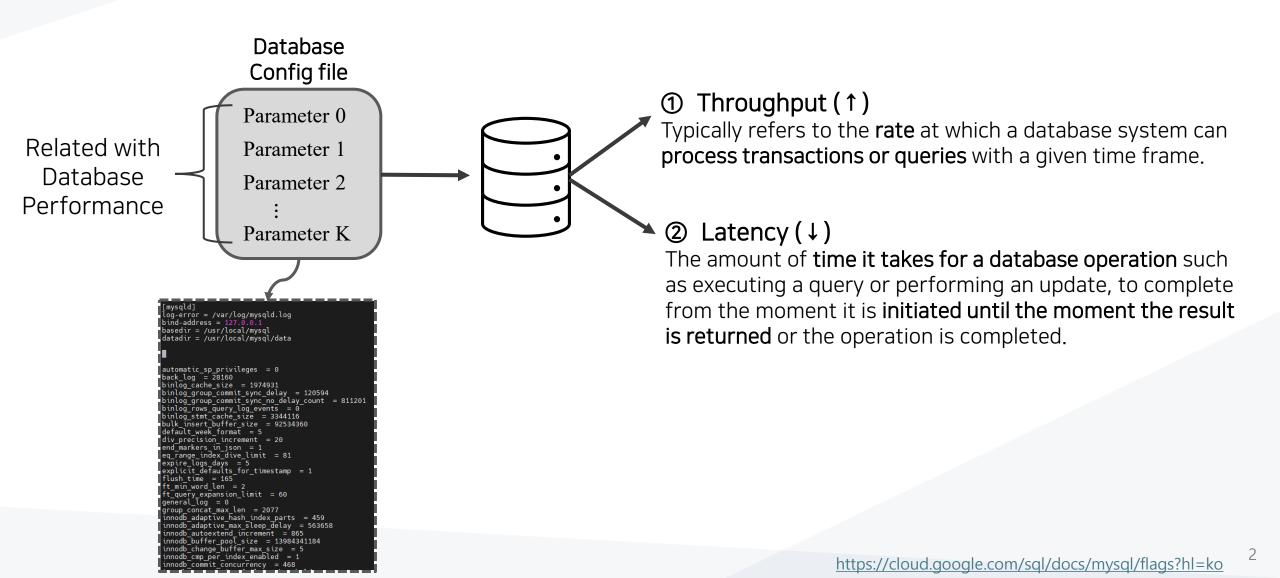
| DB/AI Requests                                            | Query/Train/Inference Results                  |
|-----------------------------------------------------------|------------------------------------------------|
| Declarative Language Model                                |                                                |
| AI for DB                                                 | DB for AI                                      |
| Database Configuration                                    | Model Inference for AI                         |
| Knob Tuning                                               | Operator Support                               |
| Index Advisor<br>View Advisor                             | Operator Selection                             |
| SQL Rewriter                                              | Execution Acceleration                         |
| Database Optimization                                     | Model Training for AI                          |
| Cardinality Estimation                                    | Feature Selection                              |
| Cost Estimation                                           | Model Selection                                |
| Join Order Selection                                      | Model Management                               |
| End-to-end Optimizer                                      | Hardware Acceleration                          |
| Database Design                                           | Data Governance for AI                         |
| Learned Indexes                                           | Data Discovery                                 |
| Learned Data Structures                                   | Data Cleaning                                  |
|                                                           | Data Labeling                                  |
| Transaction Management                                    | Data Lineage                                   |
| Database Monitoring                                       | Database Security                              |
| Health Activity Performance<br>Monitor Monitor Prediction | Data Access SQL<br>Discovery Control Injection |

Fig. 1. The overview of DB meets AI.

#### 연세대학교 Yonsei UNIVERSITY

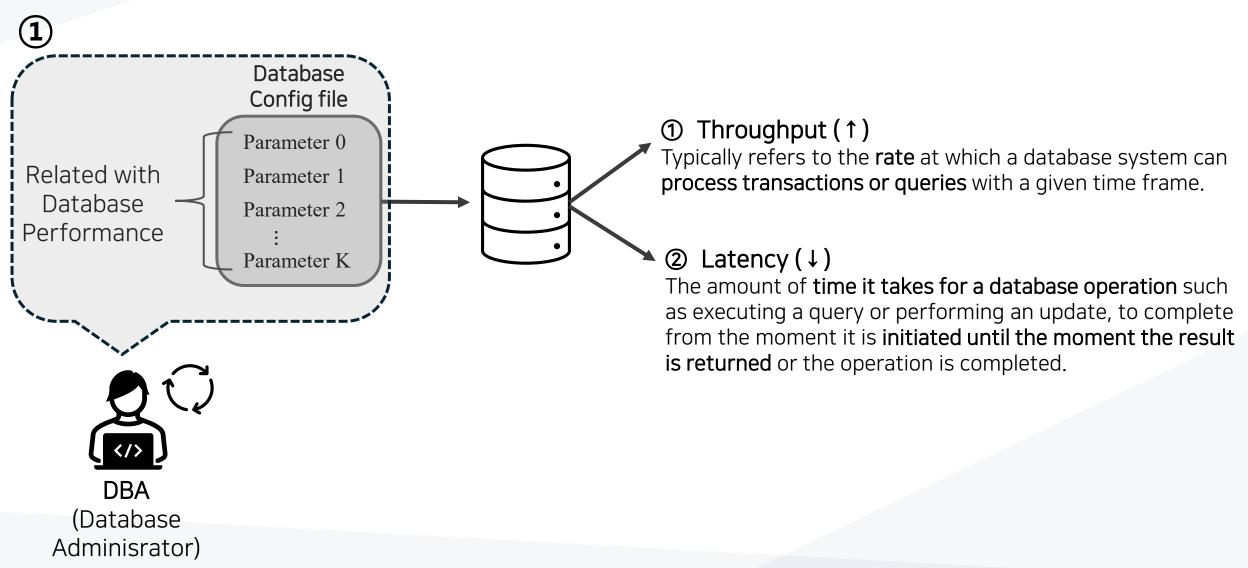
#### Background

Database Parameter Tuning



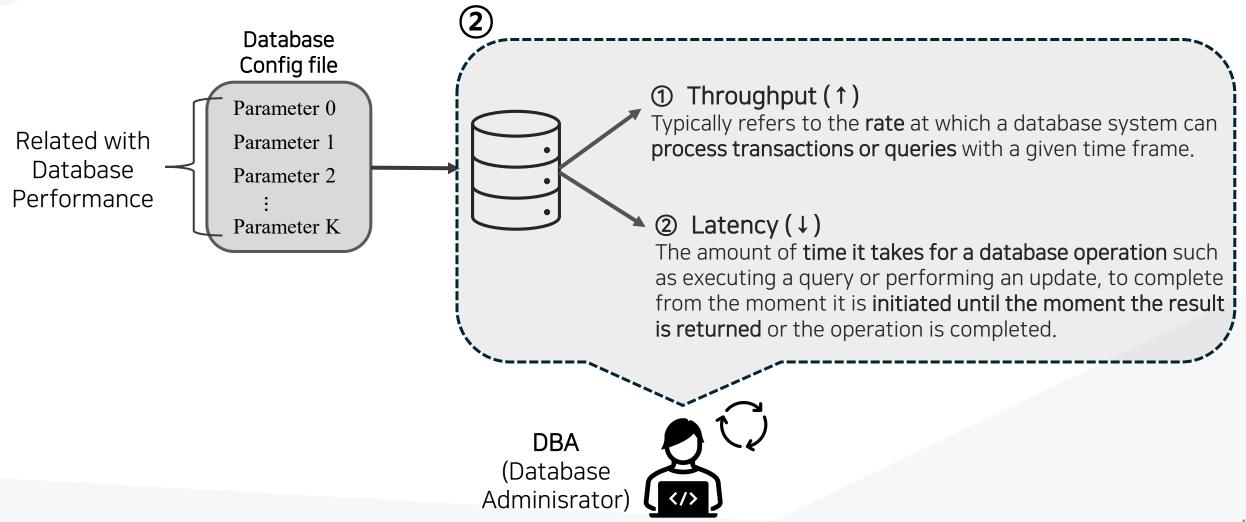


Database Parameter Tuning



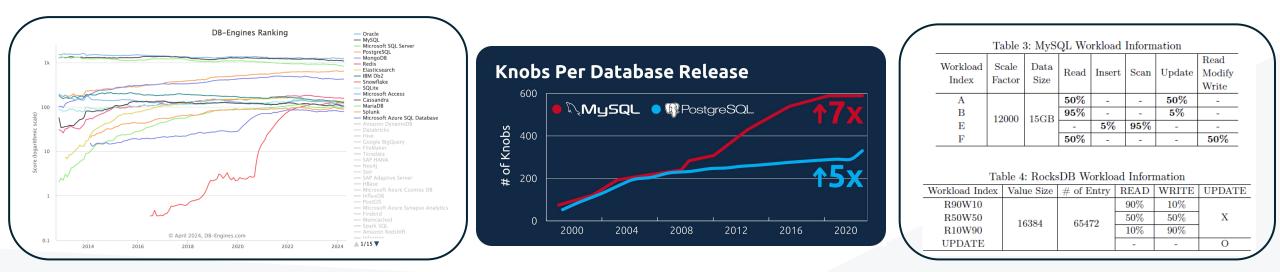


Database Parameter Tuning





- Database Parameter Tuning Limitation
- ① Increasing number of database parameters and increasing database types.
- ② Database database versions are updated with various parameter configurations, posing challenges for DBA to manually adjust tuning strategies according to version changing.
- ③ Diverse of database workloads, it is infeasible for DBAs to manually optimize for every possible workloads.

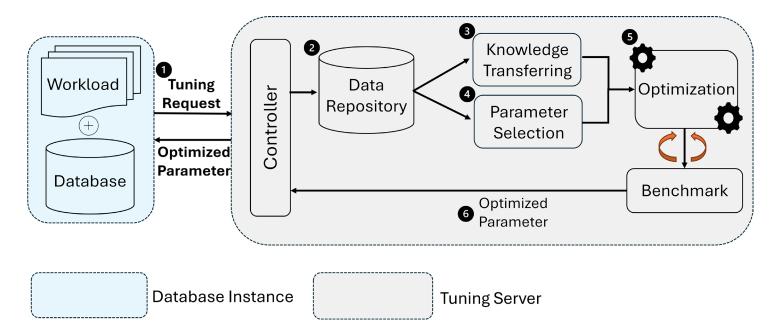


#### https://db-engines.com/en/ranking

Automatic Database Management System Tuning Through Large-scale Machine Learning SIGMOD'17



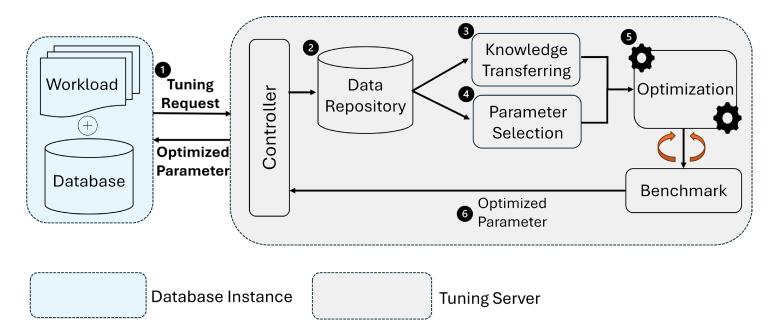
Automatic Database Parameter Tuning



- ① Tuning Request. When the Controller receives information about the DBMS and workload requiring tuning.
- ② Data Repository. During the tuning process, the DBMS and workload information provided in the tuning request are stored in the data repository.
- ③ Knowledge Transferring. To optimize the various workload, this process employs a similarity calculation between the target and the stored workloads in the data repository, utilizing the most similar workload information for the tuning process.



Automatic Database Parameter Tuning



- ④ Parameter Selection. To address the difficulty of optimization in high dimensional search spaces, the most influential parameters on database performance are selected by a parameter selection algorithm.
- ⑤ Optimization. The optimization algorithm optimizes the top-k parameters that have a significant impact on database performance (④) and information about the target workload (③).
- Optimized Parameter. The optimized parameters are passed to the controller, which then applies these parameters in the actual database.

#### Towards Online and Safe Configuration Tuning with Semi-supervised Anomaly Detection

Haitian Chen Shenzhen Institute for Advanced Study University of Electronic Science and Technology of China Shenzhen, China haitianchen@std.uestc.edu.cn

Xiushi Feng Shenzhen Institute for Advanced Study University of Electronic Science and Technology of China Shenzhen, China xiushifeng@std.uestc.edu.cn Xu Chen School of Computer Science and Engineering University of Electronic Science and Technology of China Chengdu, China xuchen@std.uestc.edu.cn

Jiandong Xie Huawei Technologies Co., Ltd. Chengdu, China xiejiandong@huawei.com Zibo Liang School of Computer Science and Engineering University of Electronic Science and Technology of China Chengdu, China zbliang@std.uestc.edu.cn

Han Su School of Computer Science and Engineering University of Electronic Science and Technology of China Chengdu, China hansu@uestc.edu.cn

Kai Zheng\* Shenzhen Institute for Advanced Study University of Electronic Science and Technology of China Shenzhen, China zhengkai@uestc.edu.cn

CIKM 2024



### **Limitation & Contribution**

- L1. Static Workload Dependency: Existing machine learning-based tuning methods perform well on static workloads but struggle to adapt to dynamic workloads, resulting in performance degradation.
- L2. Safety Concerns: Traditional approaches often lack mechanisms to ensure safe configuration sampling, leading to significant performance fluctuations during tuning.
- L3. Inefficiency in Sampling: Existing methods require extensive sampling to achieve optimal configurations, which is inefficient and time-consuming.
- L4. High Cost of Ownership: Offline tuning approaches necessitate infrastructure replication, increasing the total cost of ownership (TCO).
- L5. Business Disruption: Offline tuning may lead to temporary service halts, making it unsuitable for realworld, continuous-use environments.



### **Limitation & Contribution**

- C1. Introduces SafeTune, the first system combining anomaly detection with configuration tuning to enhance safety and performance stability in real-time. Ensures configurations remain above a safety threshold during tuning, reducing risks of performance degradation.
- **C2.** Utilizes semi-supervised anomaly detection for high-quality feature representation. Employs a ranking-based supervised classifier to refine the detection of unsafe configurations.
- C3. Demonstrates adaptability to dynamic workloads, ensuring tuning remains relevant as conditions change.
- C4. Leverages historical tuning data to provide high-quality initial configurations, significantly accelerating the tuning process.



#### Method

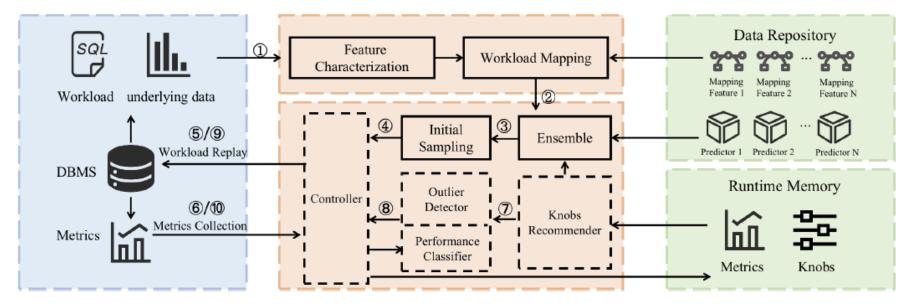


Figure 2: Overview Architecture and Workflow of SafeTune

- ① Two-Stage Filtering for Safe Configuration
  - Anomaly Detection: Identifies unsafe configurations by treating them as anomalies using unsupervised methods like KNN and Isolation Forest.
  - Transforms configurations into an outlier feature space for robust safety detection.



#### Method

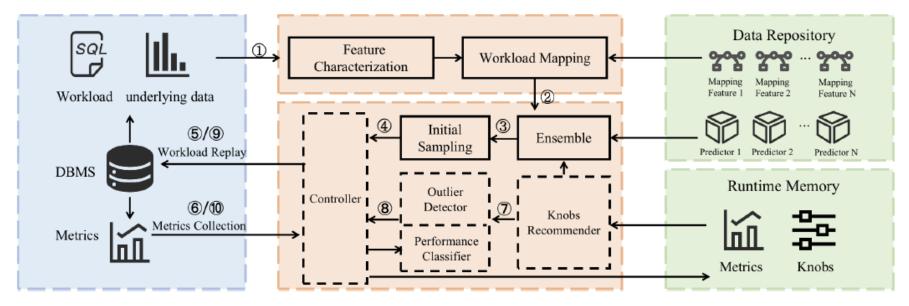


Figure 2: Overview Architecture and Workflow of SafeTune

- ① Two-Stage Filtering for Safe Configuration
  - Ranking-Based Classification: Ranks configurations using a supervised classifier (e.g., XGBoost) trained on performance data.
  - Refines safety detection by learning from historical tuning observations.



#### Method

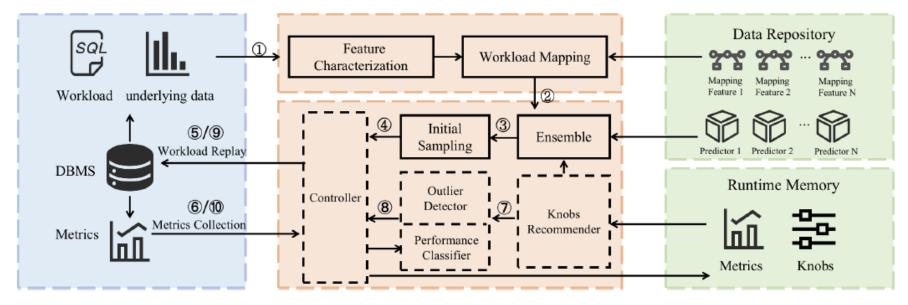


Figure 2: Overview Architecture and Workflow of SafeTune

- ④ Adapting to Dynamic Workloads
  - Divides tuning into sub-tasks and re-initializes each phase with updated knowledge.
  - Dynamically updates its anomaly detector and classifier based on the latest observations.



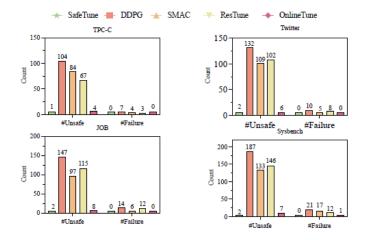


Figure 3: Safety for static workloads: Each workload is evaluated with 300 iterations.

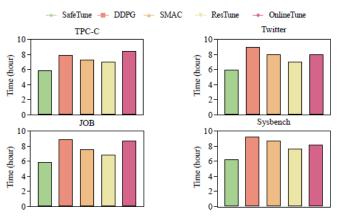
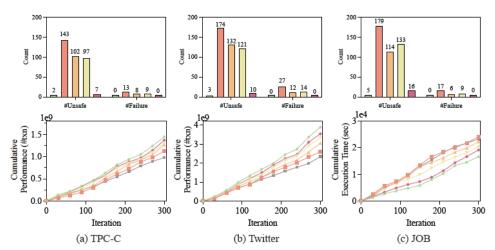


Figure 4: Tuning overhead for static workloads: Time required for each method to converge.

- SafeTune achieves the **highest level of safety**, significantly reducing unsafe configurations and system failures across all workload.
- OnlineTune also maintains safety but shows slightly higher unsafe configurations than SafeTune.
- However, offline methods like DDPG, SMAC, and ResTune exhibit poor safety performance



Safety Comparison



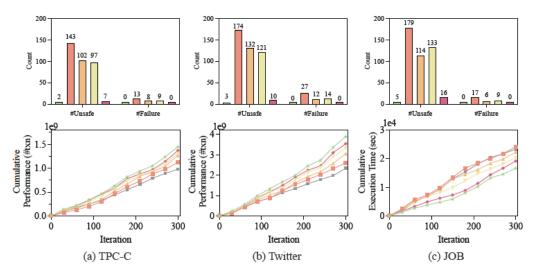
🔸 SafeTune 📕 DDPG 📥 SMAC 👎 ResTune 🔶 OnlineTune 🐠 Default

Figure 5: Cumulative performance and safety statistics during the tuning of dynamic workloads.

- SafeTune
  - Significantly **reduces unsafe configurations** and failures compared to all other methods.
  - Consistently achieves the lowest number of unsafe configurations (e.g., 2–5 across workloads) and near-zero failures.
- OnlineTune
  - Performs better than offline methods but still has higher unsafe suggestions than SafeTune.



Safety Comparison



🔶 SafeTune 📕 DDPG 📥 SMAC 👎 ResTune 🔶 OnlineTune 🐠 Default

Figure 5: Cumulative performance and safety statistics during the tuning of dynamic workloads.

- Offline Methods (DDPG, SMAC, ResTune)
  - Exhibit a large number of unsafe configurations and failures, highlighting the inability to handle dynamic workloads effectively.



Initialization Sampling

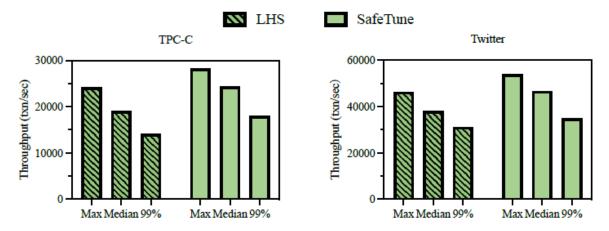


Figure 6: Initialization Sampling: Each method was tested with 15 samples per workload, and the experiment was conducted three times to obtain an average value.

- For both TPC-C and Twitter workloads, SafeTune consistently achieves higher maximum, median, and 99% throughput compared to LHS.
- In the TPC-C workload, **SafeTune's maximum throughput** is significantly higher, reflecting its ability to identify more optimal configurations early.
- In the Twitter workload, the gap between SafeTune and LHS is even more pronounced, especially in the maximum throughput metric, showcasing SafeTune's effectiveness in identifying highperformance configurations.



# Thank You for Listening