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Background

 Database Parameter Tuning

= Database tuning is to enhance the performance of database,

there are various tuning techniques available.

= Database Configuration
» Knob Tuning : Automating parameter optimization.

Index Advisor: Recommending indexes for efficient query execution.

>
> View Advisor: Suggesting materialized views to improve query performance.
>

SQL Rewriter: Enhancing query structure by rewriting inefficient SQL.

Al Meets Database: Al4DB and DB4Al (SIGMOD217)
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@ Throughput (1)
Typically refers to the rate at which a database system can
process transactions or queries with a given time frame.

@ Latency (!)

The amount of time it takes for a database operation such
as executing a query or performing an update, to complete

from the moment it is initiated until the moment the result
is returned or the operation is completed.

https://cloud.qgoogle.com/sgl/docs/mysgl/flags?hl=ko 2
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Background

« Database Parameter Tuning Limitation

@ Increasing number of database parameters and increasing database types.

@ Database database versions are updated with various parameter configurations, posing challenges

for DBA to manually adjust tuning strategies according to version changing.

® Diverse of database workloads, it is infeasible for DBAs to manually optimize for every possible

workloads.
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Background

« Automatic Database Parameter Tuning
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@ Tuning Request. When the Controller receives information about the DBMS and workload requiring tuning.

@ Data Repository. During the tuning process, the DBMS and workload information provided in the tuning
request are stored in the data repository.

® Knowledge Transferring. To optimize the various workload, this process employs a similarity calculation
between the target and the stored workloads in the data repository, utilizing the most similar workload

information for the tuning process.
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Background

« Automatic Database Parameter Tuning
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@ Parameter Selection. To address the difficulty of optimization in high dimensional search spaces, the most
influential parameters on database performance are selected by a parameter selection algorithm.

® Optimization. The optimization algorithm optimizes the top-k parameters that have a significant impact on
database performance (® ) and information about the target workload (® ).

® Optimized Parameter. The optimized parameters are passed to the controller, which then applies these
parameters in the actual database.
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Limitation & Contribution

 L1. Static Workload Dependency: Existing machine learning-based tuning methods perform well on static

workloads but struggle to adapt to dynamic workloads, resulting in performance degradation.

- L2. Safety Concerns: Traditional approaches often lack mechanisms to ensure safe configuration sampling,

leading to significant performance fluctuations during tuning.

« L3. Inefficiency in Sampling: Existing methods require extensive sampling to achieve optimal configurations,

which is inefficient and time-consuming.

L4, High Cost of Ownership: Offline tuning approaches necessitate infrastructure replication, increasing the

total cost of ownership (TCO).

« L5, Business Disruption: Offline tuning may lead to temporary service halts, making it unsuitable for real-

world, continuous-use environments.
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Limitation & Contribution

* C1.Introduces SafeTune, the first system combining anomaly detection with configuration tuning to enhance
safety and performance stability in real-time. Ensures configurations remain above a safety threshold during
tuning, reducing risks of performance degradation.

« (2. Utilizes semi-supervised anomaly detection for high-quality feature representation. Employs a ranking-

based supervised classifier to refine the detection of unsafe configurations.
« (3. Demonstrates adaptability to dynamic workloads, ensuring tuning remains relevant as conditions change.

« (4, Leverages historical tuning data to provide high-quality initial configurations, significantly accelerating

the tuning process.

10
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Figure 2: Overview Architecture and Workflow of SafeTune

@ Two-Stage Filtering for Safe Configuration

= Anomaly Detection: Identifies unsafe configurations by treating them as anomalies

using unsupervised methods like KNN and Isolation Forest.

= Transforms configurations into an outlier feature space for robust safety detection.

11
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Figure 2: Overview Architecture and Workflow of SafeTune

@ Two-Stage Filtering for Safe Configuration
= Ranking-Based Classification: Ranks configurations using a supervised classifier
(e.g., XGBoost) trained on performance data.

» Refines safety detection by learning from historical tuning observations.
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@ Adapting to Dynamic Workloads

= Divides tuning into sub-tasks and re-initializes each phase with updated knowledge.

= Dynamically updates its anomaly detector and classifier based on the latest observations.
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Experiments
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Figure 3: Safety for static workloads: Each workload is evalu- ~ Figure 4: Tuning overhead for static workloads: Time re-
ated with 300 iterations quired for each method to converge.

« SafeTune achieves the highest level of safety, significantly reducing unsafe
configurations and system failures across all workload.

* OnlineTune also maintains safety but shows slightly higher unsafe configurations than
SafeTune.

« However, offline methods like DDPG, SMAC, and ResTune exhibit poor safety
performance

14
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Experiments

« Safety Comparison
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Figure 5: Cumulative performance and safety statistics dur-
ing the tuning of dynamic workloads.

« SafeTune
 Significantly reduces unsafe configurations and failures compared to all other
methods.

« Consistently achieves the lowest number of unsafe configurations (e.qg., 2-5 across
workloads) and near-zero failures.

* OnlineTune
» Performs better than offline methods but still has higher unsafe suggestions than

SafeTune. 15



(0 Rl L kel

Y&’ YONSEI UNIVERSITY

RS

Experiments

« Safety Comparison
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Figure 5: Cumulative performance and safety statistics dur-
ing the tuning of dynamic workloads.

« Offline Methods (DDPG, SMAC, ResTune)

Exhibit a large number of unsafe configurations and failures, highlighting the

inability to handle dynamic workloads effectively.
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Figure 6: Initialization Sampling: Each method was tested
with 15 samples per workload, and the experiment was con-
ducted three times to obtain an average value.

For both TPC-C and Twitter workloads, SafeTune consistently achieves higher maximum, median,
and 99% throughput compared to LHS.

In the TPC-C workload, SafeTune's maximum throughput is significantly higher, reflecting its
ability to identify more optimal configurations early.

In the Twitter workload, the gap between SafeTune and LHS is even more pronounced, especially
in the maximum throughput metric, showcasing SafeTune's effectiveness in identifying high-

performance configurations. -
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Thank You for Listening
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